代码+视频,R语言VRPM绘制多种模型的彩色列线图
列线图,又称诺莫图(Nomogram),它是建立在回归分析的基础上,使用多个临床指标或者生物属性,然后采用带有分数高低的线段,从而达到设置的目的:基于多个变量的值预测一定的临床结局或者某类事件发生的概率。列线图(Nomogram)可以用于多指标联合诊断或预测疾病发病或进展。
近些年来在高质量SCI临床论文中用的越来越多。列线图将回归模型转换成了可以直观的视图,让结果更容易判断,具有可读性,例如:
咱们既往已经多篇文章介绍绘制列线图,今天咱们来视频介绍一下VRPM包绘制彩色列线图,这个包可以绘制多个模型的列线图,咱们一一来介绍。
R语言VRPM绘制多种模型的彩色列线图
代码
# install.packages("devtools") # 安装devtools包
# devtools::install_github("nanxstats/VRPM") # 安装VRPM包
# 或者在我的公众号吧这个包下载下来(公众号回复:VRPM包),手动安装library(VRPM)
library(survival)
setwd("E:/公众号文章2024年/代码+视频/代码+视频VRPM包绘制彩色评分图")
mydata <- read.csv("mydata.csv")
mydata$rank <- factor(mydata$rank)
fit <- glm(admit ~ gre + gpa + rank, data = mydata, family = "binomial")
colplot(fit)
colplot(fit,coloroptions=1)
colplot(fit,coloroptions=3)#### cox比例风险回归
library(mfp)
data(GBSG)
fit<-coxph(Surv(rfst, cens) ~ age+tumsize+posnodal+prm+esm+menostat+tumgrad, data = GBSG, model=TRUE)
colplot(fit)
str(GBSG)
str(bc)
##########
library(foreign)
bc <- read.spss("E:/r/test/Breast cancer survival agec.sav",use.value.labels=F, to.data.frame=T)
bc <- na.omit(bc)
bc$histgrad<-as.factor(bc$histgrad)
bc$er<-as.factor(bc$er)
bc$pr<-as.factor(bc$pr)
bc$ln_yesno<-as.factor(bc$ln_yesno)
bc$time<-as.integer(bc$time)
fit1<-coxph(Surv(time,status)~er+histgrad+pr+age+ln_yesno,bc,model=TRUE) #model=TRUE一定要有
colplot(fit1)#### 多项式逻辑回归模型
library(nnet)
library(VGAMdata)
data(xs.nz)
marital.nz <- xs.nz[,c("marital","sex","age","height","weight")]
mydata <- marital.nz[complete.cases(marital.nz),]
str(mydata)
fit <- multinom(marital ~ sex + age + height + weight, data = mydata,model=TRUE)
# for multinimial logistic regression, a vector of risk labels needs to be made
# and provided to the colplot function
outnames=colnames(fitted(fit))
labels=c(paste("Linear predictor for",outnames[-1]),paste("Predicted chance of being",outnames))
# visualize the model: more than one plot is generated in the current directory
colplot(fit,coloroptions=3,risklabel=labels,filename="div") #生成div开头的图片#### 支持向量机分类器
## Not run:
library(kernlab)
data(iris)
levels(iris$Species)[levels(iris$Species)=="setosa"] <- "other"
levels(iris$Species)[levels(iris$Species)=="virginica"] <- "other"
names(iris)=c("SL","SW","PL","PW","Species")
# RBF kernel
model <-ksvm(Species ~ ., data = iris,prob.model=TRUE,kpar=list(0.03),C=10)
# The plot should be based on all training data, so the following code should be used:
newmodel=preplotperf(model,iris,indy=5,zerolevel="min") #对模型和数据进行处理
colplot(newmodel,filename="IRIS2",zerolevel="min",coloroptions=5)
相关文章:

代码+视频,R语言VRPM绘制多种模型的彩色列线图
列线图,又称诺莫图(Nomogram),它是建立在回归分析的基础上,使用多个临床指标或者生物属性,然后采用带有分数高低的线段,从而达到设置的目的:基于多个变量的值预测一定的临床结局或者…...

Python 设计模式之工厂函数模式
文章目录 案例基本案例逐渐复杂的案例 问题回顾什么是工厂模式?为什么会用到工厂函数模式?工厂函数模式和抽象工厂模式有什么关系? 工厂函数模式是一种创建型设计模式,抛出问题: 什么是工厂函数模式?为什么…...
数据赋能(171)——开发:数据挖掘——概述、关注焦点
概述 数据挖掘是从大量的数据中,提取隐藏在其中的、事先不知道的、但潜在有用的信息的过程。 数据挖掘是数据分析过程中的一个核心环节。 数据挖掘的主要目的是从大量数据中自动发现隐藏的模式、关联和趋势,以揭示数据的潜在价值。数据挖掘技术可以帮…...

L1 - OpenCompass 评测 InternLM-1.8B 实践
基础任务(完成此任务即完成闯关) 使用 OpenCompass 评测 internlm2-chat-1.8b 模型在 ceval 数据集上的性能,记录复现过程并截图。 按照教程中的顺序安装包有问题,网上找了解决方案,按一下顺序能正常执行 使用OpenCo…...
JS【详解】数据类型检测(含获取任意数据的数据类型的函数封装、typeof、检测是否为 null、检测是否为数组、检测是否为非数组/函数的对象)
【函数封装】获取任意数据的数据类型 /*** 获取任意数据的数据类型** param x 变量* returns 返回变量的类型名称(小写字母)*/ function getType(x) {// 获取目标数据的私有属性 [[Class]] 的值const originType Object.prototype.toString.call(x); //…...

OpenCV图像滤波(10)Laplacian函数的使用
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 功能描述 计算图像的拉普拉斯值。 该函数通过使用 Sobel 运算符计算出的 x 和 y 的二阶导数之和来计算源图像的拉普拉斯值: dst Δ src ∂…...

docker系列11:Dockerfile入门
传送门 docker系列1:docker安装 docker系列2:阿里云镜像加速器 docker系列3:docker镜像基本命令 docker系列4:docker容器基本命令 docker系列5:docker安装nginx docker系列6:docker安装redis docker系…...

LVS(Linux virual server)详解
目录 一、LVS(Linux virual server)是什么? 二、集群和分布式简介 2.1、集群Cluster 2.2、分布式 2.3、集群和分布式 三、LVS运行原理 3.1、LVS基本概念 3.2、LVS集群的类型 3.2.1 nat模式 3.2.2 DR模式 3.2.3、LVS工作模式总结 …...
Session共享方法
在Web开发中,会话(Session)管理是跟踪用户与服务器之间交互的一种常见方法。Session 共享通常指的是在一个应用集群或多个应用服务之间保持用户的会话状态一致。这在负载均衡、微服务架构或者分布式系统中尤为重要 一、基于SQL的session管理…...

Ubuntu 22.04 Docker安装笔记
1、准备一台虚机 可以根据《VMware Workstation安装Ubuntu 22.04笔记》来准备虚拟机。完成后,根据需求安装必要的软件,并设置root权限进行登录。 sudo apt update sudo apt install iputils-ping -y sudo apt install vim -y允许root ssh登录࿱…...
编程-设计模式 6:适配器模式
设计模式 6:适配器模式 定义与目的 定义:适配器模式将一个类的接口转换成客户希望的另一个接口。适配器模式使得原本由于接口不兼容而不能一起工作的那些类可以一起工作。目的:该模式的主要目的是解决接口不匹配的问题,使得一个…...
ERC721 概念解释
目录 FeaturesVotesAccess ControlUpgradeabilityFeatures Mintable: 允许创建新的代币(minting)。合约的所有者或有权限的账户可以调用 mint 函数来生成新的代币,并将其分配给指定的地址。 Auto Increment Ids:自动递增 ID。每次创建新的代币时,代币的 ID 会自动递增,确保…...
数据结构(其五)--串
目录 12.串 12.1 基本操作 12.2 串的存储结构 12.3 字符串的模式匹配算法 (1).朴素模式匹配算法 (2).KMP算法 i.next[]数组的求解 ii.next[]数组的优化——nextval数组 iii.手算nextval数组 iiii.机算nextval数组 + KMP函数 12.串 串,即字符串(string),由零个或多…...
LeetCode Hot100 LRU缓存
请你设计并实现一个满足 LRU (最近最少使用) 缓存 约束的数据结构。 实现 LRUCache 类: LRUCache(int capacity) 以 正整数 作为容量 capacity 初始化 LRU 缓存int get(int key) 如果关键字 key 存在于缓存中,则返回关键字的值,否则返回 -…...

GESP C++ 2024年06月一级真题卷
一、单选题(每题 2 分,共 30 分) 第 1 题 在 C 中,下列不可做变量的是 ( ) 。 A. five-Star B. five_star C. fiveStar D. _fiveStar 答案:A 解析:标识符命名规则,标识符由字母、数…...
在 Ubuntu Server 上配置静态 IP 地址
在 Ubuntu Server 上配置静态 IP 地址 测试时使用的Ubuntu server版本是22.04 一、Ubuntu 17.10之前版本 使用 ifupdown 配置文件来设置静态 IP。配置文件通常位于 /etc/network/interfaces。 1.1 编辑 /etc/network/interfaces 文件: sudo vim /etc/network/in…...

数据结构——栈的讲解(超详细)
前言: 小编已经在前面讲完了链表和顺序表的内容,下面我们继续乘胜追击,开始另一个数据结构:栈的详解,下面跟上小编的脚步,开启今天的学习之路! 目录 1.栈的概念和结构 1.1.栈的概念 1.2.栈的结构…...

三防平板助力MES系统,实现工厂移动式生产报工
在当今竞争激烈的制造业环境中,提高生产效率、优化生产流程以及实现精准的生产管理已经成为企业生存和发展的关键。 MES系统作为连接企业计划层和控制层的桥梁,在实现生产过程的信息化、数字化和智能化方面发挥着重要作用。与此同时,三防平板…...
WEB渗透Bypass篇-常规函数绕过
常规函数绕过 <?php echo exec(whoami);?> ------------------------------------------------------ <?php echo shell_exec(whoami);?> ------------------------------------------------------ <?php system(whoami);?> ------------------------…...

C++从入门到起飞之——string类的模拟实现 全方位剖析!
🌈个人主页:秋风起,再归来~🔥系列专栏:C从入门到起飞 🔖克心守己,律己则安 目录 1、多文件之间的关系 2、模拟实现常用的构造函数 2.1 无参构造函数 2.2 有参的构造函数 2.3 析构函…...

XCTF-web-easyupload
试了试php,php7,pht,phtml等,都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接,得到flag...
Java 语言特性(面试系列2)
一、SQL 基础 1. 复杂查询 (1)连接查询(JOIN) 内连接(INNER JOIN):返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...
Leetcode 3576. Transform Array to All Equal Elements
Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接:3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到…...

关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案
问题描述:iview使用table 中type: "index",分页之后 ,索引还是从1开始,试过绑定后台返回数据的id, 这种方法可行,就是后台返回数据的每个页面id都不完全是按照从1开始的升序,因此百度了下,找到了…...
vue3 定时器-定义全局方法 vue+ts
1.创建ts文件 路径:src/utils/timer.ts 完整代码: import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...
Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!
一、引言 在数据驱动的背景下,知识图谱凭借其高效的信息组织能力,正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合,探讨知识图谱开发的实现细节,帮助读者掌握该技术栈在实际项目中的落地方法。 …...

EtherNet/IP转DeviceNet协议网关详解
一,设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络,本网关连接到EtherNet/IP总线中做为从站使用,连接到DeviceNet总线中做为从站使用。 在自动…...

HarmonyOS运动开发:如何用mpchart绘制运动配速图表
##鸿蒙核心技术##运动开发##Sensor Service Kit(传感器服务)# 前言 在运动类应用中,运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据,如配速、距离、卡路里消耗等,用户可以更清晰…...
Redis:现代应用开发的高效内存数据存储利器
一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发,其初衷是为了满足他自己的一个项目需求,即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源,Redis凭借其简单易用、…...

STM32---外部32.768K晶振(LSE)无法起振问题
晶振是否起振主要就检查两个1、晶振与MCU是否兼容;2、晶振的负载电容是否匹配 目录 一、判断晶振与MCU是否兼容 二、判断负载电容是否匹配 1. 晶振负载电容(CL)与匹配电容(CL1、CL2)的关系 2. 如何选择 CL1 和 CL…...