24/8/9算法笔记 随机森林
"极限森林"(Extremely Randomized Trees,简称ERT)是一种集成学习方法,它属于决策树的变体,通常被归类为随机森林(Random Forest)的一种。极限森林的核心思想是在构建决策树时引入极端的随机性,以此来提高模型的多样性,减少过拟合的风险,并可能提高模型的泛化能力。
导入包
from sklearn.ensemble import RandomForestClassifierfrom sklearn.tree import DecisionTreeClassifier
from sklearn import tree
from sklearn import datasets
import graphvizfrom sklearn.model_selection import train_test_split
import numpy as np
X,y =datasets.load_wine(return_X_y=True)
X_train,X_test,y_train,y_test = train_test_split(X,y)
一棵树
score =0
for i in range(100):X_train,X_test,y_train,y_test = train_test_split(X,y)model = DecisionTreeClassifier()model.fit(X_train,y_train)score += model.score(X_test,y_test)/100print('一棵决策树平均得分',score)
![]()
随机森林(多棵树)
score =0
for i in range(100):X_train,X_test,y_train,y_test = train_test_split(X,y)#分类器clfclf = RandomForestClassifier(n_estimators=100)#表示100棵树组成随机森林clf.fit(X_train,y_train)score += model.score(X_test,y_test)/100print('随机森林平均得分',score)
![]()
两种算法比较(准确率)
model.predict_proba(X_test)#一棵树,叶节点,落到哪个叶节点算作哪一类,概率0.1

clf.predict_proba(X_test)#森林

可视化

X_train.shape
![]()
#随机森林100棵
#先画第一棵树
dot_data = tree.export_graphviz(clf[0],filled =True,rounded = True)
graphviz.Source(dot_data)

#第50棵树
dot_data = tree.export_graphviz(clf[49],filled =True,rounded = True)
graphviz.Source(dot_data)

#最后一棵树
dot_data = tree.export_graphviz(clf[99],filled =True,rounded = True)
graphviz.Source(dot_data)

#随机森林步骤
#1.随机选择样本(放回抽样)
#2.随机选择特征
#3.构建决策树
#4.随机森林投票
#优点
#1.表现良好
#2.可以处理高纬度数据(维度随机选择)
#3.辅助进行特征选择
#4.得益于Bagging可以进行并行训练
#缺点
#对于噪声过大的数据容易过拟合
极限森林
#从分裂随机中筛选最优分裂条件
#依然使用上面的数据
from sklearn.ensemble import ExtraTreesClassifier
score = 0
for i in range(100):X_train,X_test,y_train,y_test = train_test_split(X,y)#葡萄酒的价格clf2 = ExtraTreesClassifier(max_depth = 3)#深度限制clf2.fit(X_train,y_train)score +=clf2.score(X_test,y_test)/100
print('极限森林平均得分是',score)
![]()
#第一棵树
dot_data = tree.export_graphviz(clf2[0],filled=True,rounded=True)
graphviz.Source(dot_data)

#第100棵树
dot_data = tree.export_graphviz(clf2[-1],filled=True,rounded=True)
graphviz.Source(dot_data)

计算gini系数
count = []
for i in range(3):count.append((y_train ==i).sum())
count = np.array(count)
p = count/count.sum()#计算概率
gini = (p*(1-p)).sum()
print('未分裂,gini系数是:',round(gini,3))

Gini系数,全称为Gini不纯度(Gini impurity),是决策树算法中用于选择最佳分裂属性的一个指标。它衡量的是数据集中的不确定性或不纯度。Gini不纯度越低,表示数据集的纯度越高,即数据集中的样本属于同一个类别的可能性越大。
Gini不纯度的计算公式如下:

其中,nn 是数据集中类别的数量,pipi 是选择的属性第 ii 个类别的样本比例。
相关文章:
24/8/9算法笔记 随机森林
"极限森林"(Extremely Randomized Trees,简称ERT)是一种集成学习方法,它属于决策树的变体,通常被归类为随机森林(Random Forest)的一种。极限森林的核心思想是在构建决策树时引入极端…...
如何在前后端分离项目中,使用Spring Security
使用 WebSecurityConfigurationAdapter 在前后端分离的架构中,通常使用 Token 进行认证和授权是一种常见的做法。Token 可以是 JSON Web Token(JWT),用于在客户端和服务器之间传递身份信息和访问控制信息。下面我将详细介绍如何在…...
c#怎么折叠代码快捷
在C#中,你可以使用快捷键来折叠或展开代码,以便更好地管理和浏览代码。以下是一些常用的快捷键: 折叠所有方法:使用Ctrl M O。折叠或展开当前方法:使用Ctrl M M。展开所有方法:使用…...
数据库篇--八股文学习第十七天| 什么是慢查询?原因是什么?可以怎么优化?;undo log、redo log、binlog 有什么用?
1、什么是慢查询?原因是什么?可以怎么优化? 答: 数据库查询的执行时间超过指定的超时时间时,就被称为慢查询。 原因: 查询语句比较复杂:查询涉及多个表,包含复杂的连接和子查询&…...
插件、cookie存储,json,ajax详解
1.插件 下载地址:http://github.com/carhartl/jquery-cookie/zipball/v1.4.1 使用文档:jquery-cookie(github.com) 2.存储 初学前端用的是localStorage和sessionStorage,后来又引入了cookie进行存储。 localStorage使用如下 sessionStor…...
快速上手Spring Boot
快速上手Spring Boot (qq.com)...
思路超清晰的 LVS-NAT 模式实验部署
目录 一、实验原理 1、实验基础配置图 2、实验原理 二、实验环境准备 1、准备四台红帽9的主机 2、四台主机的基础配置 (1)client 1)配置主机名:client 2)配置ip:172.25.254.200 (2)lv…...
Android实时通信:WebSocket与WebRTC的应用与优化
文章目录 一、WebSocket在Android中的应用1.1 简介1.2 示例 二、WebRTC在Android中的应用2.1 简介2.2 示例 三、Android实时通信的优化策略3.1 网络优化3.2 延迟降低 四、Android实时通信的安全问题五、实时通信协议的比较六、总结 在现代移动应用中,实时通信已经成…...
力扣刷题之3131.找出与数组相加的整数I
题干描述 给你两个长度相等的数组 nums1 和 nums2。 数组 nums1 中的每个元素都与变量 x 所表示的整数相加。如果 x 为负数,则表现为元素值的减少。 在与 x 相加后,nums1 和 nums2 相等 。当两个数组中包含相同的整数,并且这些整数出现的频…...
非线性表之堆的实际应用和二叉树的遍历
目录 前言:前一篇我已经介绍过了二叉树和堆的介绍和相关代码的实现 一、堆的实现 1.1堆向上调整算法 1.2堆向下调整算法 二、堆的应用 2.1堆的排序 2.2TOP-K问题 三、二叉树的遍历 3.1 二叉树的创建 3.2遍历介绍 3.3前序遍历 3.4中序遍历 3.5后序遍历 …...
os.path库学习之splitext函数
os.path库学习之splitext函数 一、简介 os.path.splitext 是 Python 标准库 os.path 模块中的一个函数,用于将文件名分割成两部分:文件名和扩展名。这个函数非常有用,特别是在处理文件路径和文件扩展名时。 二、语法和参数 语法: os.path…...
Python知识点:如何使用Sqlmap进行SQL注入测试
使用 Sqlmap 进行 SQL 注入测试是一个非常有效的方法,它可以帮助你自动化地检测和利用 SQL 注入漏洞。以下是使用 Sqlmap 进行 SQL 注入测试的详细步骤: 1. 安装 Sqlmap 首先,你需要安装 Sqlmap。Sqlmap 是一个 Python 工具,因此…...
Android Gradle开发与应用 (一) : Gradle基础
Gradle基础 Gradle 是一个基于 Apache Ant 和 Apache Maven 概念的项目自动化构建工具。它使用一种基于 Groovy 的特定领域语言(DSL)来声明项目设置,而不是传统的 XML。Gradle 提供了灵活的构建脚本和强大的依赖管理功能,使其成为…...
Linux驱动开发—设备树分析:GPIO,中断,时钟信息,CPU信息
书接上回:Linux驱动开发—设备树基本概念,语法详解-CSDN博客 文章目录 使用设备树描述中断使用设备树描述CPU节点CPU 节点缓存节点总结 使用设备树描述时钟总结 使用设备树描述GPIO示例设备树节点逐行解析GPIO 单元 使用设备树描述中断 在NXP 官方中截…...
Java全栈解密:从JVM内存管理到Spring框架,揭秘垃圾回收、类加载机制与Web开发精髓的全方位旅程
JVM内存划分 在JVM中,每个线程有自己的虚拟机栈,而整个JVM实例共享一些内存区域。JVM的内存划分主要包括四个部分:程序计数器、虚拟机栈、堆区和方法区(元数据区)。 程序计数器:程序计数器用于存储当前线程…...
【探索Linux】P.46(高级IO —— 五种IO模型简介 | IO重要概念)
阅读导航 引言一、五种IO模型1. 阻塞IO(1)定义(2)特点 2. 非阻塞IO(1)定义(2)特点 3. IO多路复用(1)定义(2)特点 4. 信号驱动IO&#…...
【MongoDB 】MongoDB 介绍及应用,设计到4个案例
MongoDB 介绍概述 基础概念 MongoDB 是非关系型数据库,也就是nosql,存储json数据格式会非常灵活,要比数据库mysql/MariaDB更好,同时也能为mysql/MariaDB分摊一部分的流量压力。 对于经常读写的数据他会存入内存,如此…...
AI浪潮下的程序员生存指南:如何在智能时代锻造不可替代的核心竞争力
人工智能时代,程序员如何保持核心竞争力? 随着AIGC(如chatgpt、midjourney、claude等)大语言模型接二连三的涌现,AI辅助编程工具日益普及,程序员的工作方式正在发生深刻变革。有人担心AI可能取代部分编程工…...
Journyx soap_cgi.pyc接口XML外部实体注入漏洞复现 [附POC]
文章目录 Journyx soap_cgi.pyc接口XML外部实体注入漏洞复现 [附POC]0x01 前言0x02 漏洞描述0x03 影响版本0x04 漏洞环境0x05 漏洞复现1.访问漏洞环境2.构造POC3.复现Journyx soap_cgi.pyc接口XML外部实体注入漏洞复现 [附POC] 0x01 前言 免责声明:请勿利用文章内的相关技术…...
vue 日期控件 100天内的时间禁用不允许选择
vue 日期控件 100天内的时间禁用不允许选择,可以从101天选起 比如,2024年8月9号开始,100天内禁止选择,第101天之后的日期可以选,效果如图所示 // 日期控件代码 加上 :picker-options"pickerOptions" <…...
RestClient
什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端,它允许HTTP与Elasticsearch 集群通信,而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级ÿ…...
JavaSec-RCE
简介 RCE(Remote Code Execution),可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景:Groovy代码注入 Groovy是一种基于JVM的动态语言,语法简洁,支持闭包、动态类型和Java互操作性,…...
HTML 列表、表格、表单
1 列表标签 作用:布局内容排列整齐的区域 列表分类:无序列表、有序列表、定义列表。 例如: 1.1 无序列表 标签:ul 嵌套 li,ul是无序列表,li是列表条目。 注意事项: ul 标签里面只能包裹 li…...
linux 错误码总结
1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...
Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理
引言 Bitmap(位图)是Android应用内存占用的“头号杀手”。一张1080P(1920x1080)的图片以ARGB_8888格式加载时,内存占用高达8MB(192010804字节)。据统计,超过60%的应用OOM崩溃与Bitm…...
dify打造数据可视化图表
一、概述 在日常工作和学习中,我们经常需要和数据打交道。无论是分析报告、项目展示,还是简单的数据洞察,一个清晰直观的图表,往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server,由蚂蚁集团 AntV 团队…...
初学 pytest 记录
安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...
JVM虚拟机:内存结构、垃圾回收、性能优化
1、JVM虚拟机的简介 Java 虚拟机(Java Virtual Machine 简称:JVM)是运行所有 Java 程序的抽象计算机,是 Java 语言的运行环境,实现了 Java 程序的跨平台特性。JVM 屏蔽了与具体操作系统平台相关的信息,使得 Java 程序只需生成在 JVM 上运行的目标代码(字节码),就可以…...
SQL慢可能是触发了ring buffer
简介 最近在进行 postgresql 性能排查的时候,发现 PG 在某一个时间并行执行的 SQL 变得特别慢。最后通过监控监观察到并行发起得时间 buffers_alloc 就急速上升,且低水位伴随在整个慢 SQL,一直是 buferIO 的等待事件,此时也没有其他会话的争抢。SQL 虽然不是高效 SQL ,但…...
从 GreenPlum 到镜舟数据库:杭银消费金融湖仓一体转型实践
作者:吴岐诗,杭银消费金融大数据应用开发工程师 本文整理自杭银消费金融大数据应用开发工程师在StarRocks Summit Asia 2024的分享 引言:融合数据湖与数仓的创新之路 在数字金融时代,数据已成为金融机构的核心竞争力。杭银消费金…...
