当前位置: 首页 > news >正文

Python知识点:使用FastAI进行快速深度学习模型构建

使用FastAI构建深度学习模型非常方便,尤其是对于快速原型开发和实验。以下是一个使用FastAI构建深度学习模型的完整示例,涵盖数据准备、模型训练和评估。

安装依赖

首先,确保你安装了FastAI库和其他必要的库:

pip install fastai

数据准备

我们以CIFAR-10数据集为例,演示如何准备数据。

from fastai.vision.all import *# 下载并加载CIFAR-10数据集
path = untar_data(URLs.CIFAR)
dls = ImageDataLoaders.from_folder(path, valid='test', item_tfms=Resize(224))

构建和训练模型

使用FastAI的高层API快速构建和训练模型。这里我们使用ResNet18作为示例模型。

# 定义模型
learn = vision_learner(dls, resnet18, metrics=accuracy)# 训练模型
learn.fine_tune(1)

评估模型

训练完成后,评估模型性能。

# 评估模型
learn.validate()

完整示例

综合以上步骤,以下是完整的代码示例:

from fastai.vision.all import *# 下载并加载CIFAR-10数据集
path = untar_data(URLs.CIFAR)
dls = ImageDataLoaders.from_folder(path, valid='test', item_tfms=Resize(224))# 定义模型
learn = vision_learner(dls, resnet18, metrics=accuracy)# 训练模型
learn.fine_tune(1)# 评估模型
accuracy_score = learn.validate()
print(f"Validation accuracy: {accuracy_score[1]:.4f}")# 预测新数据
# 假设`new_image_path`是新图像的路径
new_image_path = path/'test'/'airplane'/'0001.png'
img = PILImage.create(new_image_path)
pred, pred_idx, probs = learn.predict(img)
print(f"Prediction: {pred}, Probability: {probs[pred_idx]:.4f}")

自定义数据集

如果你有自己的数据集,可以按照以下方式进行数据准备。

假设你的数据集结构如下:

/path/to/your/datatrain/class1/img1.jpgimg2.jpg...class2/img1.jpgimg2.jpg...valid/class1/img1.jpgimg2.jpg...class2/img1.jpgimg2.jpg...

使用FastAI加载自定义数据集:

from fastai.vision.all import *# 定义数据路径
data_path = Path('/path/to/your/data')# 加载数据
dls = ImageDataLoaders.from_folder(data_path, valid='valid', item_tfms=Resize(224))# 定义模型
learn = vision_learner(dls, resnet18, metrics=accuracy)# 训练模型
learn.fine_tune(1)# 评估模型
accuracy_score = learn.validate()
print(f"Validation accuracy: {accuracy_score[1]:.4f}")

自定义模型

如果你需要使用自定义模型,可以按照以下方式定义和训练。

from fastai.vision.all import *# 定义自定义模型
class MyModel(nn.Module):def __init__(self):super().__init__()self.conv1 = nn.Conv2d(3, 16, 3, padding=1)self.conv2 = nn.Conv2d(16, 32, 3, padding=1)self.fc1 = nn.Linear(32*8*8, 128)self.fc2 = nn.Linear(128, 10)def forward(self, x):x = F.relu(F.max_pool2d(self.conv1(x), 2))x = F.relu(F.max_pool2d(self.conv2(x), 2))x = x.view(x.size(0), -1)x = F.relu(self.fc1(x))x = self.fc2(x)return x# 加载数据
dls = ImageDataLoaders.from_folder(path, valid='test', item_tfms=Resize(224))# 创建Learner
learn = Learner(dls, MyModel(), metrics=accuracy, loss_func=CrossEntropyLossFlat())# 训练模型
learn.fit_one_cycle(5)# 评估模型
accuracy_score = learn.validate()
print(f"Validation accuracy: {accuracy_score[1]:.4f}")

使用FastAI,快速构建、训练和评估深度学习模型变得非常简单。无论是使用预训练模型还是自定义模型,FastAI都提供了强大的工具和灵活的API来满足你的需求。

相关文章:

Python知识点:使用FastAI进行快速深度学习模型构建

使用FastAI构建深度学习模型非常方便,尤其是对于快速原型开发和实验。以下是一个使用FastAI构建深度学习模型的完整示例,涵盖数据准备、模型训练和评估。 安装依赖 首先,确保你安装了FastAI库和其他必要的库: pip install fast…...

Nginx配置全局https

Nginx配置全局https 要在 Nginx 中配置将 HTTP (80 端口) 请求重定向到 HTTPS (443 端口),可以在 Nginx 的配置文件中添加以下配置。假设你已经配置好了 HTTPS 相关的证书和密钥。 打开你的 Nginx 配置文件,通常是 /etc/nginx/nginx.conf。 在配置文件…...

DBAPI 如何对SQL查询出的日期字段进行统一格式转换

DBAPI 如何对SQL查询出的日期字段进行统一格式转换 mysql有一张订单表,有两个datetime类型的字段create_time update_time 新建一个API,SQL内容是查询所有数据 访问API发现日期字段默认返回时间戳格式 如果修改成自己想要的年月日格式,就要使…...

C:每日一题:字符串左旋

题目:实现一个函数,可以实现字符串的左旋 例如:ABCD左旋一个字符就是BCDA;ABCD左旋两个字符就是CDAB; 1、解题思路: 1.确定目标旋转k个字符,我们要获取字符串的长度 len,目的是根…...

深兰科技荣获2024年度金势奖“AI出海先锋品牌”金奖

近日,由金势奖组委会、凤凰网、营销国际协会等国内外知名机构、集团共同主办的“第四届未来营销大会暨锐品牌盛典”在上海举行。大会揭晓了第四届“金势奖锐品牌大赏”奖项的评选结果,深兰科技凭借自身在机器人产品出口和海外市场开拓等出海全球化发展方…...

服务器启动jar包的时候报”no main manifest attribute“异常(快捷解决)

所以,哥们,又出现问题咯.没事,我也出现了,哈哈哈哈哈,csdn感觉太麻烦了,所以搞了一篇这个. 没得事,往下看,包解决的. 希望可以帮助到各位,感谢阅览! 小手点个赞,作者会乐烂哈哈哈哈哈哈😆😆😆&#x1f606…...

部分控件的setText文案没有出现在retranslateUi()中,多语言切换不生效问题

问题:在designer中设计UI,我从其他ui文件copy了部分控件,新ui文件重新编译生成后,setText()并没有出现在新文件的retranslateUi()函数中,导致多语言切换不生效。 void retranslateUi(QWidget * …...

ubuntu系统下安装LNMP集成环境的详细步骤(保姆级教程)

php开发中集成环境的安装是必不可少的技能,而LNMP代表的是:Linux系统下Nginx+MySQL+PHP这种网站服务器架构。今天就给大家分享下LNMP的安装步骤。 1 Nginx安装 在安装Nginx前先执行下更新命令: sudo apt-get update 接下来开始安装Nginx, 提示:Could not get lock /v…...

化繁为简:揭秘中介者模式在Java设计中的魅力与力量

中介者模式是一种行为型设计模式,它通过引入一个中介者对象来简化多个对象之间的交互,从而降低它们之间的耦合度。在Java设计模式中,中介者模式扮演着重要的角色,特别是在处理复杂系统模块间的交互时。下面对Java设计模式之中介者…...

Postgresql导入矢量数据

前期准备 工具:PgAdmin,postgis-bundle Postgres安装和postgis安装可以百度别的教程。 创建数据库添加扩展 如图,使用PgAdmin创建名为shp的数据库,并在扩展item中添加postgis扩展。 添加扩展方法可以用查询工具输入以下sql语句&…...

二叉树拙见

1.树的概念及结构 1.1树的概念: 树是一种非线性的数据结构,它是由n(n>0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。 &#xff0…...

APT 组织 Kimsuky 瞄准大学研究人员

执行摘要 Kimsuky 是一个朝鲜 APT 组织,其任务是执行符合朝鲜政府利益的全球情报收集行动。该组织自 2012 年以来一直活跃,对韩国智库和政府实体特别感兴趣;然而,它也针对美国、英国和其他欧洲国家。Kimsuky 擅长进行有针对性的网…...

Golang | Leetcode Golang题解之第327题区间和的个数

题目&#xff1a; 题解&#xff1a; import "math/rand" // 默认导入的 rand 不是这个库&#xff0c;需要显式指明type node struct {ch [2]*nodepriority intkey intdupCnt intsz int }func (o *node) cmp(b int) int {switch {case b < o.k…...

Django5实战

一、安装&#xff1a; 1、安装Django环境&#xff1a; # 安装 pip install django5.0.3# 验证 5.0.3 python -m django --version 安装慢的解决方法&#xff1a;使用阿里云的镜像源 pip install -i https://mirrors.aliyun.com/pypi/simple django5.0.3 2、创建项目&#…...

网址管理功能 Webstack

前言 在工作生活中大家可能会收集各种网址地址&#xff0c;大部分同学都是通过浏览器标签进行管理。如果你换电脑或者电脑不再身边的时候就有些不方便了。接下来我要向大家推荐一个工具&#xff1a;在线网址导航。 CNS学术导航 大家通过搜索引擎可以很方便的搜索到各种网址导航…...

【热工与工程流体力学】第1章 流体及其主要物理性质,流体的粘性,压缩性,流体的质量力和表面力(西北工业大学)

第1章 流体及其主要物理性质 一、流体力学概述 二、流体力学发展简史 三、本课程的教学计划 四、连续介质模型 五、流体的主要物理性质 六、作用在流体上的力 七、本课程中使用的单位制 一、流体力学概述 1.流体的概念 在任何微小剪应力持续作用下连续变形的物质称为流…...

TCP和UDP区别,各自的应用场景

区别 是否基于链接 TCP是面向连接的协议&#xff0c;发送数据之前需要建立连接&#xff1b;而UDP是无连接的协议&#xff0c;即发送数据之前不需要简历连接。 可靠性和有序性区别 TCP提供交付保证&#xff0c;&#xff08;TCP通过校验和重传控制&#xff0c;序号表示&#xff…...

Java开发工具IDEA

IDEA概述 Intellij IDEA IDEA全称Intellij IDEA&#xff0c;是用于Java语言开发的集成环境&#xff0c;它是业界公认的目前用于Java程序开发最好的工具。 集成环境 把代码编写&#xff0c;编译&#xff0c;执行&#xff0c;调试等多种功能综合到一起的开发工具。 IDEA下载和安…...

VIVADO IP核之DDS直接数字频率合成器使用详解

VIVADO IP核之DDS直接数字频率合成器使用详解 目录 前言 一、DDS基本知识 二、DDS IP核使用之SIN COS LUT only 三、DDS IP核之SIN COS LUT only仿真 四、DDS IP核使用之Phase Generator and SIN COS LUT 五、DDS IP核之Phase Generator and SIN COS LUT仿真 总结 前言 …...

Vue3 插槽 使用笔记

Vue3 插槽 使用笔记 介绍 在 Vue 3 中&#xff0c;插槽&#xff08;Slot&#xff09;是一个非常强大的特性&#xff0c;它允许我们更好地组织和重用组件。通过定义插槽&#xff0c;子组件可以预留出由父组件控制的区域&#xff0c;这样父组件就可以向这些区域填充自己的内容。…...

Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)

文章目录 1.什么是Redis&#xff1f;2.为什么要使用redis作为mysql的缓存&#xff1f;3.什么是缓存雪崩、缓存穿透、缓存击穿&#xff1f;3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...

【位运算】消失的两个数字(hard)

消失的两个数字&#xff08;hard&#xff09; 题⽬描述&#xff1a;解法&#xff08;位运算&#xff09;&#xff1a;Java 算法代码&#xff1a;更简便代码 题⽬链接&#xff1a;⾯试题 17.19. 消失的两个数字 题⽬描述&#xff1a; 给定⼀个数组&#xff0c;包含从 1 到 N 所有…...

1688商品列表API与其他数据源的对接思路

将1688商品列表API与其他数据源对接时&#xff0c;需结合业务场景设计数据流转链路&#xff0c;重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点&#xff1a; 一、核心对接场景与目标 商品数据同步 场景&#xff1a;将1688商品信息…...

CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云

目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...

是否存在路径(FIFOBB算法)

题目描述 一个具有 n 个顶点e条边的无向图&#xff0c;该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序&#xff0c;确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数&#xff0c;分别表示n 和 e 的值&#xff08;1…...

企业如何增强终端安全?

在数字化转型加速的今天&#xff0c;企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机&#xff0c;到工厂里的物联网设备、智能传感器&#xff0c;这些终端构成了企业与外部世界连接的 “神经末梢”。然而&#xff0c;随着远程办公的常态化和设备接入的爆炸式…...

Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)

在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马&#xff08;服务器方面的&#xff09;的原理&#xff0c;连接&#xff0c;以及各种木马及连接工具的分享 文件木马&#xff1a;https://w…...

使用LangGraph和LangSmith构建多智能体人工智能系统

现在&#xff0c;通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战&#xff0c;比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...

无人机侦测与反制技术的进展与应用

国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机&#xff08;无人驾驶飞行器&#xff0c;UAV&#xff09;技术的快速发展&#xff0c;其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统&#xff0c;无人机的“黑飞”&…...

Java求职者面试指南:Spring、Spring Boot、Spring MVC与MyBatis技术解析

Java求职者面试指南&#xff1a;Spring、Spring Boot、Spring MVC与MyBatis技术解析 一、第一轮基础概念问题 1. Spring框架的核心容器是什么&#xff1f;它的作用是什么&#xff1f; Spring框架的核心容器是IoC&#xff08;控制反转&#xff09;容器。它的主要作用是管理对…...