二叉树——9.找树左下角的值
力扣题目链接
给定一个二叉树,在树的最后一行找到最左边的值。
示例:
输出:7
题干很简单,找到树的最后一行,在该行找到最左边的值,结合完整代码进行分析。
完整代码如下:
class Solution:def findBottomLeftValue(self, root: TreeNode) -> int:self.max_depth = float('-inf')self.result = Noneself.traversal(root, 0)return self.resultdef traversal(self, node, depth):if not node.left and not node.right:if depth > self.max_depth:self.max_depth = depthself.result = node.valreturnif node.left:depth += 1self.traversal(node.left, depth)depth -= 1if node.right:depth += 1self.traversal(node.right, depth)depth -= 1
首先初始化max_depth,用来记录当前访问到的最大深度。初始值设为负无穷大,保证第一次遇到叶子节点时会更新深度。初始化一个属性result,用来存储最底层最左边节点的值。调用辅助方法traversal,开始递归遍历二叉树,初始深度设为0。遍历完成后,返回最底层最左边节点的值。
接着开始定义辅助函数traversal。
if not node.left and not node.right:if depth > self.max_depth:self.max_depth = depthself.result = node.valreturn
检查当前节点是否是叶子节点(即没有左子节点和右子节点)。如果是叶子节点则进入下一层if,如果当前节点的深度大于已记录的最大深度,更新最大深度和结果值。更新max_depth为当前节点的深度,更新result为当前节点的值。
if node.left:depth += 1self.traversal(node.left, depth)depth -= 1if node.right:depth += 1self.traversal(node.right, depth)depth -= 1
如果当前节点有左子节点,递归遍历左子树。depth += 1是一个计数操作,将当前节点的深度增加1,这表示我们正在进入二叉树的下一层。在递归调用之前增加深度是为了确保递归调用时能够正确地反映该节点在二叉树中的实际深度。
接着,开始递归遍历左子树,传入左子节点和更新后的深度,一直递归调用,直到到达叶子节点(即没有子节点的节点)为止。depth -= 1是一个还原操作,将深度恢复到递归调用之前的状态。这是为了确保在处理完左子树后,能够正确地继续处理其他子树或返回到上一层节点。
右子树同理。
结合完整代码,题目思路为一层一层向下探索,直到找到叶子节点,更新深度和结果。返回上一层进入另一子树,继续递归,只要发现深度更低的叶子结点就更新之前的深度和结果,直到遍历完所有树。
但应该也有同学发现了,在该代码中更新深度的条件只有是叶子节点且if depth > self.max_depth,那如果最下层只有一个节点,且该节点为右叶子,那这个右叶子算这棵树的左下角的值吗?在该道题目中,按上述代码进行提交,结果是正确的,所以在该题目中如果最下层只有一个节点,且该节点为右叶子,那这个右叶子算这棵树的左下角的值。
方法二:队列迭代
from collections import dequeclass Solution:def findBottomLeftValue(self, root: TreeNode) -> int:queue = deque([root]) # 使用队列来进行广度优先搜索while queue:node = queue.popleft() # 弹出当前层的节点# 这里重要的是先把右节点入队,再把左节点入队if node.right:queue.append(node.right)if node.left:queue.append(node.left)# 最后弹出的 node 就是最后一层最左边的节点return node.val
首先,将根节点推入队列。只要队列中还有数就继续while循环,把根节点从队列中弹出赋值给node,如果当前node有右子树,先将右子节点推入队列,再将左子节点推入队列。先右后左,这是为了保证每一层先将右侧的节点弹出。结合示例进行分析:
1/ \2 3/ / \4 5 6\7
初始队列为[1],队列存在数进入while循环,弹出队列最左侧的数1作为node,1存在右子节点3,则当前队列为[3],1存在左节点2,则当前队列为[3,2]。队列存在,弹出队列最左侧节点3作为node,3存在右子节点,则当前队列为[2,6],3存在左子节点,则当前队列为[2,6,5]。队列存在,弹出最左侧节点2作为node,2只存在左子节点4,则当前队列为[6,5,4]。队列存在,弹出6作为node,6只存在右子节点7,则当前队列为[5,4,7],一个个弹出,最后弹出7为最后的值。将该代码提交,结果也同样正确,所以在该题目中如果最下层只有一个节点,且该节点为右叶子,那这个右叶子算这棵树的左下角的值。
相关文章:

二叉树——9.找树左下角的值
力扣题目链接 给定一个二叉树,在树的最后一行找到最左边的值。 示例: 输出:7 题干很简单,找到树的最后一行,在该行找到最左边的值,结合完整代码进行分析。 完整代码如下: class Solution:d…...

如何用github制作个人网站
这里整理了一些参考资料。总结来说,如果系统学过html网页制作的话,可以不用看这篇博客了;这里适合于小白,就是那种 没有做过网页、打算以别人优秀的个人主页为框架做网页的小白。 一、简单说明 这是利用github.io来制作网页的&a…...

二.PhotoKit - 相册权限(彻底读懂权限管理)
引言 用户的照片和视频算是用户最私密的数据之一,由于内置的隐私保护功能,APP只有在用户明确授权的前提下才能访问用户的照片库。从iOS14 开始,PhotoKit进一步增强了用户的隐私控制,用户可以选择指定的照片或者视频资源的访问权限…...

二叉树------最小堆,最大堆。
什么是最小堆: 堆是一种二叉树,最小堆中所有父亲节点的值都要比自己的子节点的值要小。而根节点称为堆顶。根据定义我们可以得到堆中最小元素就在堆顶。(节点左上角是编号,内部是元素值) 假设该图中的堆顶元素是24呢&a…...

预约功能的知识整理
前置知识 如果项目为小程序的开发项目中: 我们确定数据库中有的字段有: 预约人姓名、手机号、家人名称、预约时间 根据我们的经定一表必须要有的6个字段: 主键、创建时间、修改时间、创建人、修改人、备注 使用我们现在有的字段为: 主键…...

Linux的常用操作-02
一:Linux的系统目录结构 /bin bin是ary的缩写,这个目录存放着最经常用的命令 /boot:这里存放的是启动Linux时使用的一些核心文件,包括一些连接文件以及镜像文件。 /dev:dev是Device(设备)的缩写,该目录下存放的是Lin…...

Android Studio 连接手机进行调试
总所周知,Android Studio里的虚拟手机下载后又大又难用。不如直接连手机用。本篇文章主要内容为Android Studio怎么连接手机进行程序调试。 1. 在AndroidSDK中下载google USB Driver: 2. 连接手机: 进入电脑设备管理器界面。并点开便携设备,…...

Vue3项目创建及相关配置
Vue是一种用于构建用户界面的JavaScript框架。它采用了一种称为MVVM(Model-View-ViewModel)的架构模式。 MVVM是一种将用户界面与业务逻辑和数据分离的设计模式。它包括三个部分: Model(模型):表示应用程序…...

【Python】Python中一些有趣的用法
Python是一种非常灵活和强大的编程语言,它有很多有趣的用法,以下是一些例子: 一行代码实现FizzBuzz: print(\n.join([FizzBuzz[i%3*4:i%5*8:-1] or str(i) for i in range(1, 101)]))使用列表推导式生成斐波那契数列: …...

RCE复现问题和研究
目录 先了解一些常见的知识点 PHP常见命令执行函数 call_user_func eval() call_user_func_array array_filter 实战演练(RCE)PHP Eval函数参数限制在16个字符的情况下 ,如何拿到Webshell? 1、长度…...

MySQL中的索引——适合创建索引的情况
1.适合创建索引的情况 1、字段的数值有唯一性的限制 2、频繁作为 WHERE 查询条件的字段 某个字段在 SELECT 语句的 WHERE 条件中经常被使用到,那么就需要给这个字段创建索引了。尤其是在数据量大的情况下,创建普通索引就可以大幅提升数据查询的效率。 …...

5款在线伪原创改写软件,智能改写文章效果好
在这个信息爆炸的时代,内容创作变得愈发重要,而对于创作者来说,有时需要一些得力的伪原创改写工具来辅助我们更好地改写出高质量的内容。今天我要和大家分享5款令人惊喜的在线伪原创改写软件,它们以出色的智能改写效果,…...

opencv-python图像增强四:多曝光融合(方法一)
文章目录 一、简介:二、多曝光融合方案:三、算法实现步骤3.1 读取图像与曝光时间:3.2 计算响应曲线并合并3.3 色调映射 四:整体代码实现五:效果 一、简介: 在摄影和计算机视觉领域,高动态范围&…...

Qt 实战(9)窗体 | 9.2、QDialog
文章目录 一、QDialog1、基本概念2、常用特性2.1、模态与非模态2.2、数据交互 3、总结 前言: Qt框架中的QDialog类是一个功能强大且灵活的对话框控件,广泛应用于各种GUI(图形用户界面)应用程序中,用于处理用户输入、消…...

Spring 事务机制
1. 引言 1.1 什么是事务 事务是由用户定义的一系列操作序列所组成的最小工作单元;这些操作要么全部完成,要么全部不完成,是一个不可分割的工作单元。常见于数据库中的并发控制和数据一致性处理场景。 1.2 事务的特性 事务具有以下特性&am…...

Android 13 GMS 内置壁纸
如图,原生系统上,设备上的壁纸 显示系统内置壁纸。如果没有添加内置壁纸,就显示默认的壁纸。点击进去就是预览页面 扩展下,默认壁纸在 frameworks/base/core/res/res/drawable-sw720dp-nodpi/default_wallpaper.png frameworks/b…...

【LeetCode】234. 回文链表
回文链表 题目描述: 给你一个单链表的头节点 head ,请你判断该链表是否为回文链表。如果是,返回 true ;否则,返回 false 。 示例 1: 输入:head [1,2,2,1] 输出:true示例 2&#…...

零基础学会机器学习,到底要多久?
这两天啊,有不少朋友和我说,想学机器学习,但是之前没有基础,不知道能不能学得会。 首先说结论,只要坚持,就能学会,但是一定不能三天打鱼两天晒网,要持之以恒,至少每隔两…...

视频汇聚/安防监控综合平台EasyCVR接入海康私有协议EHOME显示失败是什么原因?
安防监控/视频综合管理平台/视频集中存储/磁盘阵列EasyCVR视频汇聚平台,支持多种视频格式和编码方式(H.264/H.265),能够轻松对接各类前端监控设备,实现视频流的统一接入与集中管理。安防监控EasyCVR平台支持多种流媒体…...

Qt解析XML
背景 本来想解析VS的项目配置文件(*.vcxproj),配合cppclean来发现多余的#incldue。 结果发现低估了难度,VS会间接引入许多目录。 略有不甘,暂且作为一个解析XML文件的示例。 代码 VSProjectParser.h #include <QVector> #include…...

PwnLab: init-文件包含、shell反弹、提权--靶机渗透思路讲解
Vulnhub靶机链接回【PwnLab】 首页有一个登录框 image-20240807124822770 他没有验证码,我们试试暴力破解 image-20240807122743025 开始爆破了,全部失败,哈哈哈 image-20240807122851001 nmap全端口扫描试试 image-20240807131408315 有…...

OpenCV—二值化Threshold()、adaptiveThreshold()
cv2.threshold() c:double cv::threshold ( InputArray src, OutputArray dst, double thresh, double maxval, int type ) (注:源图片, 目标图, 阈值, 填充色, 阈值类型) python:cv.threshold(src,thresh, maxval, type[, dst]) src:源图片…...

第二天:java面向对象编程(OOP)
第二天:java面向对象编程(OOP) 1. 深入理解OOP四大特性 封装(Encapsulation):学习如何将数据(属性)和操作数据的方法(行为)组合成一个独立的单元࿰…...

Selenium + Python 自动化测试07(滑块的操作方法)
我们的目标是:按照这一套资料学习下来,大家可以独立完成自动化测试的任务。 本篇文章主要讲述如何操作滑块。 目前很多系统登录或者注册的页面都有滑块相关的验证,selenium 中对滑块的基本操作采用了元素的拖曳的方式。需要用到Actiochains模…...

三防平板满足多样化定制为工业领域打造硬件解决方案
在当今工业领域,数字化、智能化的发展趋势日益显著,对于高效、可靠且适应各种复杂环境的硬件设备需求不断增长。三防平板作为一种具有坚固耐用、防水防尘防摔特性的工业级设备,正以其出色的性能和多样化的定制能力,为不同行业的应…...

pytorch,用lenet5识别cifar10数据集(训练+测试+单张图片识别)
目录 LeNet-5 LeNet-5 结构 CIFAR-10 pytorch实现 lenet模型 训练模型 1.导入数据 2.训练模型 3.测试模型 测试单张图片 代码 运行结果 LeNet-5 LeNet-5 是由 Yann LeCun 等人在 1998 年提出的一种经典卷积神经网络(CNN)模型,主要…...

Word卡顿的处理方法
1. 检查和关闭后台程序 关闭不必要的后台程序,释放系统资源。使用任务管理器(Ctrl + Shift + Esc)查看占用CPU和内存较高的应用,并关闭它们。2. 更新Microsoft Office 确保你的Microsoft Office软件是最新版本。新版本通常修复了已知的性能问题。打开Word,点击文件 > 账…...

在 Linux上常见的10大压缩格式解压命令和它们对应的压缩格式
文章目录 前言一、解压 .zip 文件二、解压 .tar.gz 或 .tgz 文件三、解压 .tar 文件四、解压 .tar.bz2 文件五、解压 .tar.xz 文件六、解压 .gz 文件七、解压 .bz2 文件八、解压 .xz 文件九、解压 .7z 文件十、解压 .rar 文件总结 前言 Linux 命令可以解压不同格式的压缩文件。…...

【数据结构】三、栈和队列:6.链队列、双端队列、队列的应用(树的层次遍历、广度优先BFS、先来先服务FCFS)
文章目录 2.链队列2.1初始化(带头结点)不带头结点 2.2入队(带头结点)2.3出队(带头结点)❗2.4链队列c实例 3.双端队列考点:输出序列合法性栈双端队列 队列的应用1.树的层次遍历2.图的广度优先遍历3.操作系统…...

技术速递|使用 Native Library Interop 为 .NET MAUI 创建绑定
作者:Rachel Kang 排版:Alan Wang 在当今的应用开发领域,通过利用本机功能来扩展 .NET 应用程序的能力非常宝贵。.NET MAUI 处理程序架构使开发人员能够使用 .NET 代码直接操作本机控件,甚至允许无缝创建跨平台自定义控件。然而&a…...