当前位置: 首页 > news >正文

OpenCV入门(二十)快速学会OpenCV 19 对象测量

OpenCV入门(二十)快速学会OpenCV 19 对象测量

  • 1.对象测量
  • 2.多边形拟合
  • 3.计算对象中心

作者:Xiou

1.对象测量

opencv 中对象测量包括:
如面积,周长,质心,边界框等。
弧长与面积测量;
多边形拟合;
获取轮廓的多边形拟合结果。

python-opencv提供的方法:

cv2.moments() 用来计算图像中的中心矩(最高到三阶),

cv2.HuMoments() 用于由中心矩计算Hu矩,同时配合函数cv2.contourArea()函数计算轮廓面积,和cv2.arcLength()来计算轮廓或曲线长度

cv.approxPolyDP(多边形逼近)
-contour
-epsilon 越小越折 线越逼近真实形状
-close 是否为闭合区域

函数cv2.boundingRect返回四个参数(x,y)为矩形左上角的坐标,(w,h)是矩形的宽和高。 函数cv2.rectangle是绘制矩形函数

函数cv2.minAreaRect返回的是一个 Box2D 结构,
其中包含 :矩形左上角角点的坐标(x,y),矩形的宽和高(w,h),以及旋转角度。
但是要绘制这个矩形需要矩形的 4 个角点,可以通过函数 cv2.boxPoints() 获得,最后绘制得到旋转边界矩形。

函数cv2.minEnclosingCircle可以帮我们找到一个对象的外切圆。它是所有能够完全包括对象的圆中面积最小的一个。

函数cv2.fitEllipse返回值其实就是旋转边界矩形的内切圆。

几何矩计算

一幅M×N的数字图像ƒ(i,j),其p+q阶 几何矩mpq 和 中心矩 μpq为:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.多边形拟合

步骤:

(1)读取图片;
(2)转换成灰度图;
(3)二值化;
(4)轮廓检测;
(5)计算轮廓周长;
(6)多边形拟合;

格式:

cv2.approxPolyDP(curve, epsilon, closed, approxCurve=None)

参数:

curve: 输入轮廓;
epsilon: 逼近曲率, 越小表示相似逼近越厉害;
closed: 是否闭合。

代码实例:

import cv2
from matplotlib import pyplot as plt# 读取图片
image = cv2.imread("logo.png")
image_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 二值化
ret, thresh = cv2.threshold(image_gray, 127, 255, cv2.THRESH_OTSU)# 计算轮廓
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)# 轮廓近似
perimeter = cv2.arcLength(contours[0], True)
approx = cv2.approxPolyDP(contours[0], perimeter * 0.1, True)# 绘制轮廓
result1 = cv2.drawContours(image.copy(), contours, 0, (0, 0, 255), 2)
result2 = cv2.drawContours(image.copy(), [approx], -1, (0, 0, 255), 2)# 图片展示
f, ax = plt.subplots(1, 2, figsize=(12, 8))# 子图
ax[0].imshow(cv2.cvtColor(result1, cv2.COLOR_BGR2RGB))
ax[1].imshow(cv2.cvtColor(result2, cv2.COLOR_BGR2RGB))# 标题
ax[0].set_title("contour")
ax[1].set_title("approx")plt.show()

输出结果:

在这里插入图片描述

3.计算对象中心

cv2.moments()可以帮助我们得到轮距, 从而进一步计算图片对象的中心。

cv2.moments(array, binaryImage=None)

参数:
array: 轮廓;
binaryImage: 是否把 array 内的非零值都处理为 1, 默认为 None。

代码实例:

import numpy as np
import cv2# 读取图片
image = cv2.imread("logo.png")
image_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 二值化
ret, thresh = cv2.threshold(image_gray, 0, 255, cv2.THRESH_OTSU)# 获取轮廓
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)# 遍历每个轮廓
for i, contour in enumerate(contours):# 面积area = cv2.contourArea(contour)# 外接矩形x, y, w, h = cv2.boundingRect(contour)# 获取论距mm = cv2.moments(contour)print(mm, type(mm))  # 调试输出 (字典类型)# 获取中心cx = mm["m10"] / mm["m00"]cy = mm["m01"] / mm["m00"]# 获取cv2.circle(image, (np.int(cx), np.int(cy)), 3, (0, 255, 255), -1)cv2.rectangle(image, (x, y), (x + w, y + h), (0, 0, 255), 2)# 图片展示
cv2.imshow("result", image)
cv2.waitKey(0)
cv2.destroyAllWindows()# 保存图片
cv2.imwrite("result1.jpg", image)

输出结果:

在这里插入图片描述

相关文章:

OpenCV入门(二十)快速学会OpenCV 19 对象测量

OpenCV入门(二十)快速学会OpenCV 19 对象测量1.对象测量2.多边形拟合3.计算对象中心作者:Xiou 1.对象测量 opencv 中对象测量包括: 如面积,周长,质心,边界框等。 弧长与面积测量; …...

TCP和UDP协议的区别?

是否面向连接: TCP 是面向连接的传输,UDP 是面向无连接的传输。 是否是可靠传输:TCP是可靠的传输服务,在传递数据之前,会有三次握手来建立连接;在数据传递时,有确认、窗口、重传、拥塞控制机制…...

【C语言蓝桥杯每日一题】——排序

【C语言蓝桥杯每日一题】—— 排序😎前言🙌排序🙌总结撒花💞😎博客昵称:博客小梦 😊最喜欢的座右铭:全神贯注的上吧!!! 😊作者简介&am…...

学校官网的制作

学校官网 代码 <!DOCTYPE html> <html><head><meta charset"utf-8"><title></title><style>*{margin: 0;padding: 0;}.top{background-color: #3D3BB8;width: 100%;position: fixed;padding: 20px 0 12px 0;}.box{width…...

【云原生】k8s集群命令行工具kubectl之故障排除和调试命令

kubectl之故障排除和调试命令一、describe二、logs三、attach四、exec五、port-forward六、proxy七、cp八、debug8.1、案例1&#xff1a;共享进程空间8.2、案例2&#xff1a;更改启动命令、容器镜像8.3、案例3&#xff1a;调试节点8.4、其他一、describe 显示某个资源或某组资…...

AJAX,Axios,JSON简单了解

一. AJAX简介概念: AJAX(Asynchronous JavaScript And XML): 异步的JavaScript 和XMLAJAX作用:1.与服务器进行数据交换: 通过AJAX可以给服务器发送请求&#xff0c;并获取服务器响应的数据使用了AJAX和服务器进行通信&#xff0c;就可以使用 HTMLAJAX来替换JSP页面了2.异步交互…...

私域流量该如何打造?这套模式直接借鉴

梦龙商业案例分析&#xff0c;带你了解商业背后的秘密 古往今来&#xff0c;消费方与购买方的地位似乎就没有变过&#xff0c;消费者始终是处在被动接受的地位。 但到了现在&#xff0c;其实消费地位早已经不知不觉产生了改变。 就比如以前都是厂家有什么消费者买什么&#…...

【jenkins部署】一文弄懂自动打包部署(前后台)

这里写目录标题序言软件安装jdkmaven配置maven阿里镜像以及本地库位置git安装安装jenkins插件安装环境配置创建项目配置gitee生成gitee WebHookmaven打包验证是否打包成功连接远程服务器并重启服务远程服务器生成私钥配置ssh项目配置ssh脚本vue项目打包nodejs安装下载配置环境变…...

应届生投腾讯,被面试官问了8个和 ThreadLocal 相关的问题。

问&#xff1a;谈一谈ThreadLocal的结构。 ThreadLocal内部维护了一个ThreadLocalMap静态内部类&#xff0c;ThreadLocalMap中又维护了一个Entry静态内部类&#xff0c;和Entry数组。 Entry类继承弱引用类WeakReference&#xff0c;Entry类有一个有参构造函数&#xff0c;参数…...

Linux命令scp用法

本文主要讲的是scp用法如果哪里不对欢迎指出&#xff0c;主页https://blog.csdn.net/qq_57785602?typeblogscp 可以在win系统使用&#xff0c;本文百分之八十写的是win系统怎么使用&#xff0c;在本地上到服务器文件,从服务器下载文件到本地用工具连接到公司服务器时&#xff…...

数据质量怎么监控

目录 一、任务基线级别 二、任务级别 & 表级别 三、字段级别 1. 对指标字段的监控 2. 对维度字段的监控 四、报表级别监控 五、总结 跑了几场面试&#xff0c;数据质量怎么监控是经常被问到的问题&#xff0c;仅次于自我介绍。 因为数据行业发展了几年&#xff0c;数…...

.NET Core 实现Excel的导入导出

.NET Core 使用NPOI实现Excel的导入导出前言NPOI简介一、安装相对应的程序包1.1、在 “管理NuGet程序包” 中的浏览搜索&#xff1a;“NPOI”二、新建Excel帮助类三、调用3.1、增加一个“keywords”模型类&#xff0c;用作导出3.2、添加一个控制器3.3、编写导入导出的控制器代码…...

排好队,一个一个来:宫本武藏教你学队列(附各种队列源码)

文章目录前言&#xff1a;理解“队列”的正确姿势一个关于队列的小思考——请求处理队列的两大“护法”————顺序队列和链式队列数组实现的队列链表实现的队列循环队列关于开篇&#xff0c;你明白了吗&#xff1f;最后说一句前言&#xff1a; 哈喽&#xff01;欢迎来到黑洞晓…...

C语言--动态内存管理1

目录前言动态内存函数介绍mallocfreecallocrealloc常见的动态内存错误对NULL指针的解引用操作对动态开辟空间的越界访问对非动态开辟内存使用free释放使用free释放一块动态开辟内存的一部分对同一块动态内存多次释放动态开辟内存忘记释放&#xff08;内存泄漏&#xff09;对通讯…...

HTTPS 的工作原理

1、客户端发起 HTTPS 请求 这个没什么好说的&#xff0c;就是用户在浏览器里输入一个 https 网址&#xff0c;然后连接到 server 的 443 端口。 2、服务端的配置 采用 HTTPS 协议的服务器必须要有一套数字证书&#xff0c;可以自己制作&#xff0c;也可以向组织申请&#xf…...

游戏开发中建议使用半兰伯特光照

游戏开发中建议使用半兰伯特光照模型 在基本光照模型中求出漫反射部分的计算公式: 漫反射 = 入射光线的颜色和强度(c light) * 材质漫反射系数 (m diffuse)* 表面法线(n) * 其光源防线 (I) 在shader中为了不让 n和i的点乘结果为负数,即使用了saturate函数让值截取在[0,1]区…...

JavaScript到底如何存储数据?

1.var的迷幻操作 普遍的观点&#xff1a;JavaScript中的基本数据类型是保存在栈空间&#xff0c;而引用数据类型则是保存在堆空间里, 是否正确&#xff1f; 浏览器环境下JavaScript变量类型的运行实践结果: var a 10;console.log(a);console.log(window.a); console.log(wind…...

python实战应用讲解-【numpy专题篇】numpy应用案例(一)(附python示例代码)

目录 用Python分析二手车的销售价格 用Python构建GUI应用的铅笔草图 需要的包 实现步骤 完整代码 用Python分析二手车的销售价格 如今&#xff0c;随着技术的进步&#xff0c;像机器学习等技术正在许多组织中得到大规模的应用。这些模型通常与一组预定义的数据点一起工作…...

网络割接项目

某企业准备采购2台华为设备取代思科旧款设备,针对下列问题作出解答。 (1)做设备替换的时候,如何尽可能保证业务稳定性,请给出解决方案。 a)对现网拓扑进行分析,分析现网拓扑的规划(链路类型、cost、互联IP、互联接口等信息)、分析现网流量模型(路由协议、数据流向特…...

SpringBoot整合数据可视化大屏使用

1 前言 DataV数据可视化是使用可视化应用的方式来分析并展示庞杂数据的产品。DataV旨让更多的人看到数据可视化的魅力,帮助非专业的工程师通过图形化的界面轻松搭建专业水准的可视化应用,满足您会议展览、业务监控、风险预警、地理信息分析等多种业务的展示需求, 访问地址:h…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型

摘要 拍照搜题系统采用“三层管道&#xff08;多模态 OCR → 语义检索 → 答案渲染&#xff09;、两级检索&#xff08;倒排 BM25 向量 HNSW&#xff09;并以大语言模型兜底”的整体框架&#xff1a; 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后&#xff0c;分别用…...

(十)学生端搭建

本次旨在将之前的已完成的部分功能进行拼装到学生端&#xff0c;同时完善学生端的构建。本次工作主要包括&#xff1a; 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...

DAY 45 超大力王爱学Python

来自超大力王的友情提示&#xff1a;在用tensordoard的时候一定一定要用绝对位置&#xff0c;例如&#xff1a;tensorboard --logdir"D:\代码\archive (1)\runs\cifar10_mlp_experiment_2" 不然读取不了数据 知识点回顾&#xff1a; tensorboard的发展历史和原理tens…...

python3GUI--基于PyQt5+DeepSort+YOLOv8智能人员入侵检测系统(详细图文介绍)

文章目录 一&#xff0e;前言二&#xff0e;技术介绍1.PyQt52.DeepSort3.卡尔曼滤波4.YOLOv85.SQLite36.多线程7.入侵人员检测8.ROI区域 三&#xff0e;核心功能1.登录注册1.登录2.注册 2.主界面1.主界面简介2.数据输入3.参数配置4.告警配置5.操作控制台6.核心内容显示区域7.检…...

【Flask】:轻量级Python Web框架详解

什么是Flask&#xff1f; Flask是一个用Python编写的轻量级Web应用框架。它被称为"微框架"(microframework)&#xff0c;因为它核心简单但可扩展性强&#xff0c;不强制使用特定的项目结构或库。Flask由Armin Ronacher开发&#xff0c;基于Werkzeug WSGI工具包和Jin…...

git引用概念(git reference,git ref)(简化对复杂SHA-1哈希值的管理)(分支引用、标签引用、HEAD引用、远程引用、特殊引用)

文章目录 **引用的本质**1. **引用是文件**2. **引用的简化作用** **引用的类型**1. **分支引用&#xff08;Branch References&#xff09;**2. **标签引用&#xff08;Tag References&#xff09;**3. **HEAD 引用**4. **远程引用&#xff08;Remote References&#xff09;*…...

阿里云Alibaba Cloud安装Docker与Docker compose【图文教程】

个人记录 进入控制台&#xff0c;找到定时与自动化任务 进入‘安装/卸载扩展程序’ 点击‘安装扩展程序’ 选择docker社区版&#xff0c;点击下一步与确定&#xff0c;等待一会 安装成功 查询版本 查询docker sudo docker version查询docker compose sudo docker compo…...

JDK17 Http Request 异步处理 源码刨析

为什么可以异步&#xff1f; #调用起始源码 // 3. 发送异步请求并处理响应 CompletableFuture future client.sendAsync( request, HttpResponse.BodyHandlers.ofString() // 响应体转为字符串 ).thenApply(response -> { // 状态码检查&#xff08;非200系列抛出异常&…...

spring中的@RabbitListener注解详解

基本用法主要属性1. queues / queueNames2. containerFactory3. id4. concurrency5. ackMode6. priority7. bindings 高级特性1. 消息转换器2. 手动确认3. 条件监听4. 错误处理 配置监听容器工厂注意事项完整示例循环依赖解决1. 使用 Setter 注入2. 使用 Lazy 注解3. 重构代码结…...

操作系统期末版

文章目录 概论处理机管理进程线程处理机调度生产者消费者问题 死锁简介死锁的四个必要条件解决死锁的方法 存储管理链接的三种方式静态链接装入时动态链接运行时链接 装入内存的三种方式绝对装入可重定位装入动态运行时装入 覆盖交换存储管理方式连续分配**分段存储管理方式***…...