当前位置: 首页 > news >正文

FastAPI部署大模型Llama 3.1

项目地址:[self-llm/models/Llama3_1/01-Llama3_1-8B-Instruct FastApi 部署调用.md at master · datawhalechina/self-llm (github.com)](https://github.com/datawhalechina/self-llm/blob/master/models/Llama3_1/01-Llama3_1-8B-Instruct FastApi 部署调用.md)

目的:使用AutoDL的深度学习环境,简单部署大模型

## 环境准备

考虑到部分同学配置环境可能会遇到一些问题,我们在AutoDL平台准备了LLaMA3-1的环境镜像,点击下方链接并直接创建Autodl示例即可。 ***https://www.codewithgpu.com/i/datawhalechina/self-llm/self-llm-llama3.1***

首先 `pip` 换源加速下载并安装依赖包

```
# 升级pip
python -m pip install --upgrade pip
# 更换 pypi 源加速库的安装
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple

pip install fastapi==0.111.1
pip install uvicorn==0.30.3
pip install modelscope==1.16.1
pip install transformers==4.42.4
pip install accelerate==0.32.1
```

## 模型下载

模型下载社区有魔塔和huggingface(被墙,可能不能使用),所以同意使用魔塔社区的方式下载模型

新建 `model_download.py` 文件并在其中输入以下内容,粘贴代码后请及时保存文件,如下图所示。并运行 `python model_download.py` 执行下载,模型大小为 15GB,下载模型大概需要15 分钟。

```python
import torch
from modelscope import snapshot_download, AutoModel, AutoTokenizer
import os
model_dir = snapshot_download('LLM-Research/Meta-Llama-3.1-8B-Instruct', cache_dir='/root/autodl-tmp', revision='master')
```

![image-20240816022549858](https://new-typora2.oss-cn-guangzhou.aliyuncs.com/img/image-20240816022549858.png)

> 注意:如果模型下载失败,可以多试几次:运行 `python model_download.py`

## API部署代码

新建 `api.py` 文件并在其中输入以下内容,粘贴代码后请及时保存文件(Ctrl+`s`)。以下代码有很详细的注释

```
from fastapi import FastAPI, Request
from transformers import AutoTokenizer, AutoModelForCausalLM
import uvicorn
import json
import datetime
import torch

# 设置设备参数
DEVICE = "cuda"  # 使用CUDA
DEVICE_ID = "0"  # CUDA设备ID,如果未设置则为空
CUDA_DEVICE = f"{DEVICE}:{DEVICE_ID}" if DEVICE_ID else DEVICE  # 组合CUDA设备信息

# 清理GPU内存函数
def torch_gc():
    if torch.cuda.is_available():  # 检查是否可用CUDA
        with torch.cuda.device(CUDA_DEVICE):  # 指定CUDA设备
            torch.cuda.empty_cache()  # 清空CUDA缓存
            torch.cuda.ipc_collect()  # 收集CUDA内存碎片

# 创建FastAPI应用
app = FastAPI()

# 处理POST请求的端点
@app.post("/")
async def create_item(request: Request):
    global model, tokenizer  # 声明全局变量以便在函数内部使用模型和分词器
    json_post_raw = await request.json()  # 获取POST请求的JSON数据
    json_post = json.dumps(json_post_raw)  # 将JSON数据转换为字符串
    json_post_list = json.loads(json_post)  # 将字符串转换为Python对象
    prompt = json_post_list.get('prompt')  # 获取请求中的提示

    messages = [
            {"role": "system", "content": "You are a helpful assistant."},
            {"role": "user", "content": prompt}
    ]

    # 调用模型进行对话生成
    input_ids = tokenizer.apply_chat_template(messages,tokenize=False,add_generation_prompt=True)
    model_inputs = tokenizer([input_ids], return_tensors="pt").to('cuda')
    generated_ids = model.generate(model_inputs.input_ids,max_new_tokens=512)
    generated_ids = [
        output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
    ]
    response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
    now = datetime.datetime.now()  # 获取当前时间
    time = now.strftime("%Y-%m-%d %H:%M:%S")  # 格式化时间为字符串
    # 构建响应JSON
    answer = {
        "response": response,
        "status": 200,
        "time": time
    }
    # 构建日志信息
    log = "[" + time + "] " + '", prompt:"' + prompt + '", response:"' + repr(response) + '"'
    print(log)  # 打印日志
    torch_gc()  # 执行GPU内存清理
    return answer  # 返回响应

# 主函数入口
if __name__ == '__main__':
    # 加载预训练的分词器和模型
    model_name_or_path = '/root/autodl-tmp/LLM-Research/Meta-Llama-3___1-8B-Instruct'
    tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=False)
    model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto", torch_dtype=torch.bfloat16)

    # 启动FastAPI应用
    # 用6006端口可以将autodl的端口映射到本地,从而在本地使用api
    uvicorn.run(app, host='0.0.0.0', port=6006, workers=1)  # 在指定端口和主机上启动应用
```

运行以上代码 `python api.py`

> 如果遇到以下bug:需要`pip install transformers==4.43.1`

![](https://new-typora2.oss-cn-guangzhou.aliyuncs.com/img/image-20240816025135684.png)

##  部署测试

在终端输入以下命令启动api服务:

```
python api.py
```

加载完毕后出现如下信息说明成功。

![image-20240816025317132](https://new-typora2.oss-cn-guangzhou.aliyuncs.com/img/image-20240816025317132.png)

默认部署在 6006 端口,通过 POST 方法进行调用,可以使用 curl 调用,如下所示:

![image-20240816030021235](https://new-typora2.oss-cn-guangzhou.aliyuncs.com/img/image-20240816030021235.png)

- `curl`: 这是命令行工具的名字,用于从服务器获取或发送数据。
- `-X POST`: 这个选项指定了请求类型为 `POST`。`POST` 请求通常用于向服务器发送数据。
- `"http://127.0.0.1:6006"`: 这是请求的目标 URL。`127.0.0.1` 是本地回环地址,意味着请求将被发送到同一台计算机上运行的服务。`6006` 是服务监听的端口号。
- `-H 'Content-Type: application/json'`: 这个选项设置了请求头 (`Header`) 中的 `Content-Type` 字段为 `application/json`。这告诉服务器发送的数据是 JSON 格式。
- `-d '{"prompt": "你好"}'`: 这个选项指定了要发送的数据体 (`Body`)。在这里,数据是一个 JSON 对象,其中包含一个键值对,键是 `"prompt"`,值是 `"你好"`。这个数据体将作为请求的一部分发送给服务器。

也可以使用 python 中的 requests 库进行调用,我们新建一个test.ibynb文件,复制如下代码,按`Enter+Shift`运行代码。

```
import requests
import json

def get_completion(prompt):
    headers = {'Content-Type': 'application/json'}
    data = {"prompt": prompt}
    response = requests.post(url='http://127.0.0.1:6006', headers=headers, data=json.dumps(data))
    return response.json()['response']

if __name__ == '__main__':
    print(get_completion('我写了一篇文章:FastAPI部署大模型Llama3.1。你帮我写一段总结,100字以内'))
```

输出结果如下:

![image-20240816030254692](https://new-typora2.oss-cn-guangzhou.aliyuncs.com/img/image-20240816030254692.png![image-20240816031203422](https://new-typora2.oss-cn-guangzhou.aliyuncs.com/img/image-20240816031203422.png)

**部署大模型Llama 3.1 到 FastAPI**

本文介绍了如何将大模型Llama 3.1 部署到 FastAPI,一个现代、快速、强大的 Python web 框架。通过本教程,你将学习如何将 Llama 3.1 集成到 FastAPI 中,并利用其强大的自然语言处理能力来构建智能应用。

本文涵盖了以下内容:

*   安装和设置 FastAPI
*   下载和部署 Llama 3.1 模型
*   使用 FastAPI 与 Llama 3.1 进行交互

本教程适合任何对 AI 和机器学习感兴趣的开发者。

相关文章:

FastAPI部署大模型Llama 3.1

项目地址:[self-llm/models/Llama3_1/01-Llama3_1-8B-Instruct FastApi 部署调用.md at master datawhalechina/self-llm (github.com)](https://github.com/datawhalechina/self-llm/blob/master/models/Llama3_1/01-Llama3_1-8B-Instruct FastApi 部署调用.md) …...

C++拾趣——编译器预处理宏__COUNTER__的应用场景

大纲 生成唯一标识符调试信息宏展开模板元编程代码 在C中,__COUNTER__是一个特殊的预处理宏,它主要被用来生成唯一的整数标识符。这个宏是由一些编译器(如GCC和Visual Studio)内置支持的,而不是C标准的一部分。它的主要…...

使用HTML和cgi实现网页登录功能

0.HTML文件结构 一.HTML文件 1.test.html <!DOCTYPE html> <html><head><meta charset"utf-8"><title>菜鸟教程(runoob.com)</title></head><body><!-- 将结果提交给/cgi-bin/test.cgi下 --><form actio…...

Java流程控制01:用户交互Scanner

本节教学视频链接&#xff1a;https://www.bilibili.com/video/BV12J41137hu?p33&vd_sourceb5775c3a4ea16a5306db9c7c1c1486b5https://www.bilibili.com/video/BV12J41137hu?p33&vd_sourceb5775c3a4ea16a5306db9c7c1c1486b5 Scanner 类用于扫描输入文本从字符串中提…...

什么是回滚

回滚&#xff08;Rollback&#xff09;是指当程序或数据出现错误时&#xff0c;将程序或数据恢复到最近一个正确版本或上一次正确状态的行为。回滚机制在软件开发、数据库管理、系统部署等多个领域都有广泛应用&#xff0c;旨在保证系统的稳定性和数据的完整性。以下是关于回滚…...

Java项目通过IDEA远程debug调试

前言 在我们真实项目开发过程中&#xff0c;又是经常会发现一种问题&#xff0c;就是我们在开发环境功能是正常的&#xff0c;在测试环境可能也不太容易发现问题。 结果到了生产环境&#xff0c;由于数据量大&#xff0c;且数据类型变多后&#xff0c;就产生了一些比较难复现…...

Python 绘图入门

数据可视化的概念及意义 数据可视化有着久远的历史&#xff0c;最早可以追溯至10世纪&#xff0c;至今已经应用和发展了数百年。不知名的天文学家是已知的最早尝试以图形方式显示全年当中太阳&#xff0c;月亮和行星的位置变化的图。 图1 数据可视化的发展历程 什么是数据可视…...

RK3568平台(背光篇)背光驱动代码分析

一.背光驱动设备树DTS backlight: backlight {compatible "pwm-backlight";pwms <&pwm1 0 5555555 1>;brightness-levels <77 77 78 78 79 79 80 8182 83 84 85 86 87 87 8888 89 90 90 91 91 92 9394 94 95 95 96 96 9…...

华为od统一考试B卷【比赛】python实现

def split_params(param_str): return list(map(int, param_str.split(,))) def main(): # 获取输入 target_str input().strip() # 输入验证&#xff0c;拆分并转换为整数 try: m, n split_params(target_str) except ValueError: print(-1) return # 检查 M 和 …...

Prometheus 监控接入规范

目录 一、目的 二、自定义监控指标定义规范 2.1 基本命名规范 2.1.1 指标命名规范 2.1.2 标签名称 2.2 控制基数 2.2.1 避免高基数标签 2.2.2 预定义标签集 2.2.3 动态数据的处理 2.2.4 评估与监控基数 2.2.5 降低历史数据的保留 2.2.6 适当使用 Histogram 和 Summa…...

优化 SQL 查询性能:深入理解 EXPLAIN 命令

优化 SQL 查询性能:深入理解 EXPLAIN 命令 在 MySQL 数据库管理中,优化 SQL 查询性能是确保高效数据处理的关键。EXPLAIN 命令是分析和优化 SQL 查询的强大工具,它帮助我们理解查询执行计划,从而找到性能瓶颈并进行优化。本文将详细解释 EXPLAIN 命令返回的各个列的含义,…...

@Mapper报红

检查pom.xml&#xff0c;导入 org.mybatis.spring.boot 依赖&#xff1a; <dependency><groupId>org.mybatis.spring.boot</groupId><artifactId>mybatis-spring-boot-starter</artifactId><version>3.0.3</version></dependency…...

shell综合小实验1-----查看系统硬件信息

echo命令的使用 1&#xff1a;echo -n 不换行 echo -n “我是个大聪明” #不换行输入我是大聪明 2&#xff1a;echo -e 开启颜色 echo -e "\03335m我是大聪明\033[0m" #用35m这种颜色输出我是大聪明然后关闭颜色显示&#xff0c; 30多是字体颜色&#xff0c;40多是…...

【过程管理】项目需求管理规程(Word原件)

在软件开发的过程中&#xff0c;开发人员与用户之间往往忽视有效的信息沟通&#xff0c;这常常导致开发出的软件无法满足用户的实际需求&#xff0c;进而引发不必要的返工。返工不仅为开发人员带来技术上的困扰&#xff0c;增加了人力和物力的消耗&#xff0c;还会对软件的整体…...

C# 不使用 `async` 和 `await` 的常见场景

虽然 async 和 await 是强大的异步编程工具&#xff0c;但在某些情况下&#xff0c;不使用它们可能更合适。以下是一些不使用 async 和 await 的常见场景&#xff1a; 方法是完全同步的&#xff1a; 如果方法中的所有操作都是同步的&#xff0c;并且没有异步调用&#xff0c;则…...

adb目录笔记《adb更新、进入开发者模式,adb查询packages、adb开启应用,查询进程、强制删除进程》

1.sideload模式 在需要安卓没有root权限的时候&#xff0c;可以使用adb reboot sideload命令进入sideload模式&#xff0c;之后运行对应文件 adb reboot sideload adb sideload <root.zip> 2.packages包查询、运行、删除 在需要查看安卓中packages包的名称时&#xf…...

VS2022 C++ EasyX EGE 吃豆人升级版

我是可爱的C小盆友&#xff08;不要脸了&#xff09;&#xff0c;嘻嘻&#xff0c;等了这么久&#xff0c;吃豆人终于升级啦&#xff01; 更新日志&#xff1a; 1.修复奇奇怪怪的bug 2.把敌人AI增强了一&#xff08;hen&#xff09;点&#xff08;duo&#xff09; 3.加入了…...

计算机图形学 | 动画模拟

动画模拟 布料模拟 质点弹簧系统&#xff1a; 红色部分很弱地阻挡对折 Steep connection FEM:有限元方法 粒子系统 粒子系统本质上就是在定义个体和群体的关系。 动画帧率 VR游戏要不晕需要达到90fps Forward Kinematics Inverse Kinematics 只告诉末端p点&#xff0c;中间…...

B2.3 Arm 内存模型定义

B2.3 Arm 内存模型定义 Arm 内存模型引入了以下几种关系: 内在关系 :例如,内在数据/控制/顺序依赖关系和内在翻译之前的关系,这些是源自指令语义的硬件要求。 之后关系 :例如,之后的连贯性和 TLB 之后的关系,这些关系在特定执行中发生这种方式,但在不同的执行中可以以…...

(javaweb)SpringBootWeb案例(毕业设计)案例--部门管理

目录 1.准备工作 2.部门管理--查询功能 3.前后端联调 3.部门管理--新增功能 1.准备工作 mapper数据访问层相当于dao层 根据页面原型和需求分析出接口文档--前后端必须遵循这种规范 大部分情况下 接口文档由后端人员来编写 前后端进行交互基于restful风格接口 http的请求方式…...

使用VSCode开发Django指南

使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架&#xff0c;专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用&#xff0c;其中包含三个使用通用基本模板的页面。在此…...

反向工程与模型迁移:打造未来商品详情API的可持续创新体系

在电商行业蓬勃发展的当下&#xff0c;商品详情API作为连接电商平台与开发者、商家及用户的关键纽带&#xff0c;其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息&#xff08;如名称、价格、库存等&#xff09;的获取与展示&#xff0c;已难以满足市场对个性化、智能…...

从零实现富文本编辑器#5-编辑器选区模型的状态结构表达

先前我们总结了浏览器选区模型的交互策略&#xff0c;并且实现了基本的选区操作&#xff0c;还调研了自绘选区的实现。那么相对的&#xff0c;我们还需要设计编辑器的选区表达&#xff0c;也可以称为模型选区。编辑器中应用变更时的操作范围&#xff0c;就是以模型选区为基准来…...

Psychopy音频的使用

Psychopy音频的使用 本文主要解决以下问题&#xff1a; 指定音频引擎与设备&#xff1b;播放音频文件 本文所使用的环境&#xff1a; Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...

C# 类和继承(抽象类)

抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...

【python异步多线程】异步多线程爬虫代码示例

claude生成的python多线程、异步代码示例&#xff0c;模拟20个网页的爬取&#xff0c;每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程&#xff1a;允许程序同时执行多个任务&#xff0c;提高IO密集型任务&#xff08;如网络请求&#xff09;的效率…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)

本文把滑坡位移序列拆开、筛优质因子&#xff0c;再用 CNN-BiLSTM-Attention 来动态预测每个子序列&#xff0c;最后重构出总位移&#xff0c;预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵&#xff08;S…...

Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理

引言 Bitmap&#xff08;位图&#xff09;是Android应用内存占用的“头号杀手”。一张1080P&#xff08;1920x1080&#xff09;的图片以ARGB_8888格式加载时&#xff0c;内存占用高达8MB&#xff08;192010804字节&#xff09;。据统计&#xff0c;超过60%的应用OOM崩溃与Bitm…...

Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析

Java求职者面试指南&#xff1a;Spring、Spring Boot、MyBatis框架与计算机基础问题解析 一、第一轮提问&#xff08;基础概念问题&#xff09; 1. 请解释Spring框架的核心容器是什么&#xff1f;它在Spring中起到什么作用&#xff1f; Spring框架的核心容器是IoC容器&#…...

【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)

本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...