【npm】如何将开发的vite插件发布到npm
前言
简单说下 npm 是什么:
npm 是一个 node 模块管理工具,也是全球最大的共享源。 npm 工具与 nodejs 配套发布,便利开发人员共享代码。npm 主要包括 npm 官方网站、CLI(控制台命令行工具)、和 registry(包/软件仓库)。
本文的插件功能为:DNS预解析。
这里只用来演示如何发布到npm,该插件的功能具体是如何实现的请看本人另一篇文章:DNS解析优化。
一、创建本地项目
1. 初始化项目
生成项目目录并且初始化package.json
mkdir vite-plugin-tianbenchu-dns-prefetch
cd vite-plugin-tianbenchu-dns-prefetch
npm init -y
2. 安装开发依赖
本文使用了如下依赖
npm install vite --save-dev
npm install glob node-html-parser url-regex
3. 编写主要内容
在 src 目录下创建插件文件 index.js,将逻辑封装为 Vite 插件。
const fs = require("fs")
const path = require("path")
const { parse } = require("node-html-parser") // 可以脱离浏览器环境将html字符串解析成HTML节点
const { glob } = require("glob")
const urlRegex = require("url-regex") // 可以分析文件中所包含的url
const { strict } = require("assert")const urlPattern = /(https?:\/\/[^/]*)/i // 获取外部链接
const urls = new Set() // url集合// 遍历dist目录中的所有 HTML 文件
async function searchDomain() {const files = await glob("dist/**/*.{html,css,js}")for (const file of files) {const source = fs.readFileSync(file, "utf-8")const matches = source.match(urlRegex({ strict: true }))console.log(matches, "@@@@@@@@")if (matches) {matches.forEach((url) => {const match = url.match(urlPattern)if (match && match[1]) {urls.add(match[1]) // 将域名加到Set中}})}}
}// 将遍历好的所有域名生成link预解析标签并插入到index.html中
async function insertLinks() {const files = await glob("dist/**/*.html")const links = [...urls].map((url) => `<link rel="dns-prefetch" href="${url}">`).join("\n")for (const file of files) {const html = fs.readFileSync(file, "utf-8")const root = parse(html)const head = root.querySelector("head")head.insertAdjacentHTML("afterbegin", links)fs.writeFileSync(file, root.toString(), "utf-8")}
}async function main() {await searchDomain()await insertLinks()
}main()
4. 配置package.json
{"name": "vite-plugin-tianbenchu-dns-prefetch","version": "1.0.0","main": "src/index.js","scripts": {"build": "vite build"},"keywords": ["vite","plugin","dns-prefetch"],"author": "TianBenChu","license": "ISC","description": "A Vite plugin to automatically add dns-prefetch links for external resources in the bundled HTML.","devDependencies": {"vite": "^5.4.0"},"dependencies": {"glob": "^11.0.0","node-html-parser": "^6.1.13","url-regex": "^5.0.0"}
}
5. 添加README和LICENSE
书写 README.md 文件和 LICENSE 文件,以便用户了解插件的用途和使用方法。
二、本地测试
在插件项目目录外创建测试项目并安装依赖。
npm create vite@latest
npm install
在插件项目中运行以下命令,将插件链接到本地 npm 包缓存中
npm link
在测试项目中使用 npm link 链接本地插件,这里的链接名对应插件项目中package.json中的name。
npm link vite-plugin-tianbenchu-dns-prefetch
配置 vite.config.js,使用本地插件
import { defineConfig } from 'vite';
import dnsPrefetchPlugin from 'vite-plugin-dns-prefetch';export default defineConfig({plugins: [dnsPrefetchPlugin()]
});
本文正常测试结果如下:
1.未配置插件前执行npm run build,发现dist目录下index.html的head中并没有link标签。
2.使用本地插件后执行npm run build,index.html的head中插入了link标签以保证dns预解析。

三、发布到npm
1. 登录npm账号
如何注册npm账号:npm官网链接
npm login
如果使用了淘宝镜像则会出现以下报错:

切换为官方注册表即可
npm config set registry https://registry.npmjs.org/
2. 发布
npm publish
需要注意 package.json 中不能设置为私有,否则无法发布。

登录npm发现已经发布了该插件

3. 通过npm下载并测试插件
npm install vite-plugin-xxxxxx --save-dev
相关文章:
【npm】如何将开发的vite插件发布到npm
前言 简单说下 npm 是什么: npm 是一个 node 模块管理工具,也是全球最大的共享源。 npm 工具与 nodejs 配套发布,便利开发人员共享代码。npm 主要包括 npm 官方网站、CLI(控制台命令行工具)、和 registry(…...
数据结构-查找
一、基本术语 二、线性结构 ASL:平均查找长度 1、顺序查找 1.1、代码实现 typedef struct {int* elem;int TableLen; }SSTable;int Search_Seq(SSTable ST, int key) {ST.elem[0] key; //哨兵,使得循环不用判断数组是否会越界int i;for (i ST…...
Ubuntu环境下 pip安装应用时报错
pip安装应用时,报SSL错 WARNING: pip is configured with locations that require TLS/SSL, however the ssl module in Python is not available. 可能原因是python没有ssl,则在python安装时应该添加ssl ./configure --with-openssl/usr/local/ssl …...
打包时未添加camera模块,请参考https://ask.dcloud.net.cn/arss/1ooticle/283
今天在app打包使用的时候突然发现app在拍照上传照片的时候遇到这个问题 遇到这种情况通常是因为app打包的时候manifestjson文件中App模块配置中的Camera&Gallery配置没有打开,点击相应选项勾选即可 然后再上传打包就好了! 哈哈哈好久没写博客了最近太忙了&…...
Vue3+Setup使用websocket
创建src/util/socket.ts let websock: any null; let global_callback: any null; const serverPort "8080"; // webSocket连接端口 const wsuri "ws://" window.location.hostname ":" serverPort "/wsdemo"; function crea…...
tcpdump快速入门及实践手册
tcpdump快速入门及实践手册 1. 快速入门 [1]. 基本用法 基本用法: tcpdump [选项 参数] [过滤器 参数] [rootkysrv1 pwe]# tcpdump -h tcpdump version 4.9.3 libpcap version 1.9.1 (with TPACKET_V3) OpenSSL 1.1.1f 31 Mar 2020 Usage: tcpdump [-aAbdDefhH…...
javascript双判断语句
JavaScript的if双判断语句和java相似 if(条件表达式) { 执行语句 } else { 执行语句 } 比如说要判断一个年份是否是闰年,代码如下 html><head><meta charset"UTF-8"><title></title></hea…...
C# 中的多态
多态的定义: 通过指向派生类的基类引用,调用虚函数,会根据引用所指向派生类的实际类型,调用派生类中的同名重写函数,便是多态。 C#中的多态可以分为两种类型: 编译时多态(静态多态)&…...
高性能内存对象缓存Memcached原理与部署
目录 一:Memcached 1:Memcached的概述 2:数据存储方式与数据过期方式 (1)数据存储方式:Slab Allocation (2)数据过期方式:LRU、Laxzy Expiration 3.Memcached 缓存机制 4.Memcached 分布式 5.Memcac…...
【C++进阶】map与set的封装实践
文章目录 map和setmapmap的框架迭代器operator()operator--()operator()和operator!()operator*()operator->() insertbegin()end()operator[] ()map的所有代码: set的封装迭代器的封装总结 map和set 通过观察stl的底层我们可以看见,map和set是通过红…...
可视化编程-七巧低代码入门02
1.1.什么是可视化编程 非可视化编程是一种直接在集成开发环境中(IDE)编写代码的编程方式,这种编程方式要求开发人员具备深入的编程知识,开发效率相对较低,代码维护难度较大,容易出现错误,也需要…...
算法:魔法字典
1️⃣要求: 设计一个使用单词列表进行初始化的数据结构,单词列表中的单词 互不相同 。 如果给出一个单词,请判定能否只将这个单词中一个字母换成另一个字母,使得所形成的新单词存在于你构建的字典中。 实现 MagicDictionary 类…...
html+css 实现hover 翻转按钮
前言:哈喽,大家好,今天给大家分享html+css 绚丽效果!并提供具体代码帮助大家深入理解,彻底掌握!创作不易,如果能帮助到大家或者给大家一些灵感和启发,欢迎收藏+关注哦 💕 目录 一、效果二、原理解析1.这是一个,hover翻转按钮的效果。这其实是用==一个元素==实现的。…...
ETL程序员如何平衡日常编码工作与提升式学习
在快速发展的科技行业中,程序员面临着不断更新的技术和工具,尤其是数据领域的从业者,如ETL(抽取、转换、加载)工程师。如何在日常繁重的编码工作中找到时间进行提升式学习,成为了许多ETL工程师的共同挑战。…...
被嫌弃的35岁程序员,竟找到了职业的新出路:PMP项目管理
35岁,本应是事业发展的高峰期。更多听到的却是35岁职场天花板,特别是IT从业者,35岁就好像是一道迈不过的坎:多年的工作经验,在35岁的生理年龄面前,一文不值。 IT从业者若想安然度过“35岁危机”࿰…...
跟李沐学AI:目标检测、锚框
边缘框 用于表示物体的位置,一个边缘框通过四个数字定义:(坐上x, 左上y, 右下x, 右下y)或(左上x, 左上y, 宽, 高) 通常物体检测或目标检测的数据集比图片分类的数据集小很多,因为物体检测数据集标注成本高很多。 目…...
【鸿蒙学习】HarmonyOS应用开发者基础 - 构建更加丰富的页面(一)
学完时间:2024年8月14日 一、前言叨叨 学习HarmonyOS的第六课,人数又成功的降了500名左右,到了3575人了。 二、ArkWeb 1、概念介绍 ArkWeb是用于应用程序中显示Web页面内容的Web组件,为开发者提供页面加载、页面交互、页面调…...
机器学习深度学习中的Warmup技术是什么?
机器学习&深度学习中的Warmup技术是什么? 在机器学习&深度学习模型的训练过程中,优化器的学习率调整策略对模型的性能和收敛性至关重要。Warmup是优化器学习率调整的一种技术,旨在改善训练的稳定性,特别是在训练的初期阶…...
ECMAScript6中的模块:export导出、import导入
1、模块概述 早期的 JavaScript 程序很小,通常被用来执行独立的脚本任务,在 Web 页面中需要的地方提供一定的交互。随着 Web 应用程序变得越来越复杂,有必要考虑提供一种将 JavaScript 程序拆分为可按需导入的单独模块的机制,这就…...
mysql写个分区表
因为表量已经达到1个亿了。现在想做个优化,先按照 create_time 时间进行分区吧。 create_time 是varchar类型。 CREATE TABLE orders (id varchar(40) NOT NULL ,order_no VARCHAR(20) NOT NULL,create_time VARCHAR(20) NOT NULL,amount DECIMAL(10,2) NOT NULL,…...
手游刚开服就被攻击怎么办?如何防御DDoS?
开服初期是手游最脆弱的阶段,极易成为DDoS攻击的目标。一旦遭遇攻击,可能导致服务器瘫痪、玩家流失,甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案,帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...
css实现圆环展示百分比,根据值动态展示所占比例
代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...
边缘计算医疗风险自查APP开发方案
核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...
无法与IP建立连接,未能下载VSCode服务器
如题,在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈,发现是VSCode版本自动更新惹的祸!!! 在VSCode的帮助->关于这里发现前几天VSCode自动更新了,我的版本号变成了1.100.3 才导致了远程连接出…...
SCAU期末笔记 - 数据分析与数据挖掘题库解析
这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...
基于服务器使用 apt 安装、配置 Nginx
🧾 一、查看可安装的 Nginx 版本 首先,你可以运行以下命令查看可用版本: apt-cache madison nginx-core输出示例: nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...
Leetcode 3577. Count the Number of Computer Unlocking Permutations
Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接:3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯,要想要能够将所有的电脑解锁&#x…...
django filter 统计数量 按属性去重
在Django中,如果你想要根据某个属性对查询集进行去重并统计数量,你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求: 方法1:使用annotate()和Count 假设你有一个模型Item,并且你想…...
MODBUS TCP转CANopen 技术赋能高效协同作业
在现代工业自动化领域,MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步,这两种通讯协议也正在被逐步融合,形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...
第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词
Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵,其中每行,每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid,其中有多少个 3 3 的 “幻方” 子矩阵&am…...
