pytorch实现单层线性回归模型
文章目录
- 简述
- 代码重构要点
- 数学模型、运行结果
- 数据构建与分批
- 模型封装
- 运行测试
简述
python使用 数值微分法 求梯度,实现单层线性回归-CSDN博客
python使用 计算图(forward与backward) 求梯度,实现单层线性回归-CSDN博客
数值微分求梯度、计算图求梯度,实现单层线性回归 模型速度差异及损失率比对-CSDN博客上述文章都是使用python来实现求梯度的,是为了学习原理,实际使用上,pytorch实现了自动求导,原理也是(基于计算图的)链式求导,本文还就 “单层线性回归” 问题用pytorch实现。
代码重构要点
1.nn.Moudle
torch.nn.Module
的继承、nn.Sequential
、nn.Linear
:
torch.nn — PyTorch 2.4 documentation
对于nn.Sequential
的理解可以看python使用 计算图(forward与backward) 求梯度,实现单层线性回归-CSDN博客一文代码的模型初始化与计算部分,如图:
nn.Sequential
可以说是把图中标注的代码封装起来了,并且可以放多层。
2.torch.optim
优化器
本例中使用随机梯度下降torch.optim.SGD()
。
torch.optim — PyTorch 2.4 documentation
SGD — PyTorch 2.4 documentation
3.数据构建与数据加载
data.TensorDataset
、data.DataLoader
,之前为了实现数据分批,手动实现了data_iter
,现在可以直接调用pytorch的data.DataLoader
。
对于data.DataLoader
的参数num_workers
,默认值为0,即在主线程中处理,但设置其它值时存在反而速度变慢的情况,以后再讨论。
数学模型、运行结果
y = X W + b y = XW + b y=XW+b
y为标量,X列数为2. 损失函数使用均方误差。
运行结果:
数据构建与分批
def build_data(weights, bias, num_examples): x = torch.randn(num_examples, len(weights)) y = x.matmul(weights) + bias # 给y加个噪声 y += torch.randn(1) return x, y def load_array(data_arrays, batch_size, num_workers=0, is_train=True): """构造一个PyTorch数据迭代器""" dataset = data.TensorDataset(*data_arrays) return data.DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, shuffle=is_train)
模型封装
class TorchLinearNet(torch.nn.Module): def __init__(self): super(TorchLinearNet, self).__init__() model = nn.Sequential(Linear(in_features=2, out_features=1)) self.model = model self.criterion = nn.MSELoss() def predict(self, x): return self.model(x) def loss(self, y_predict, y): return self.criterion(y_predict, y)
运行测试
if __name__ == '__main__': start = time.perf_counter() true_w1 = torch.rand(2, 1) true_b1 = torch.rand(1) x_train, y_train = build_data(true_w1, true_b1, 5000) net = TorchLinearNet() print(net) init_loss = net.loss(net.predict(x_train), y_train) loss_history = list() loss_history.append(init_loss.item()) num_epochs = 3 batch_size = 50 learning_rate = 0.01 dataloader_workers = 6 data_loader = load_array((x_train, y_train), batch_size=batch_size, is_train=True) optimizer = torch.optim.SGD(net.parameters(), lr=learning_rate) for epoch in range(num_epochs): # running_loss = 0.0 for x, y in data_loader: y_pred = net.predict(x) loss = net.loss(y_pred, y) optimizer.zero_grad() loss.backward() optimizer.step() # running_loss = running_loss + loss.item() loss_history.append(loss.item()) end = time.perf_counter() print(f"运行时间(不含绘图时间):{(end - start) * 1000}毫秒\n") plt.title("pytorch实现单层线性回归模型", fontproperties="STSong") plt.xlabel("epoch") plt.ylabel("loss") plt.plot(loss_history, linestyle='dotted') plt.show() print(f'初始损失值:{init_loss}') print(f'最后一次损失值:{loss_history[-1]}\n') print(f'正确参数: true_w1={true_w1}, true_b1={true_b1}') print(f'预测参数:{net.model.state_dict()}')
相关文章:

pytorch实现单层线性回归模型
文章目录 简述代码重构要点 数学模型、运行结果数据构建与分批模型封装运行测试 简述 python使用 数值微分法 求梯度,实现单层线性回归-CSDN博客 python使用 计算图(forward与backward) 求梯度,实现单层线性回归-CSDN博客 数值微分…...

智能小家电能否利用亚马逊VC搭上跨境快车?——WAYLI威利跨境助力商家
智能小家电行业在全球化背景下,正迎来前所未有的发展机遇。亚马逊为品牌商和制造商提供的一站式服务平台,为智能小家电企业提供了搭乘跨境快车、拓展国际市场的绝佳机会。 首先,亚马逊VC平台能够帮助智能小家电企业简化与亚马逊的合作流程&am…...

顺丰科技25届秋季校园招聘常见问题答疑及校招网申测评笔试题型分析SHL题库Verify测评
Q:顺丰科技2025届校园招聘面向对象是? A:2025届应届毕业生,毕业时间段为2024年10月1日至2025年9月30日(不满足以上毕业时间的同学可以关注顺丰科技社会招聘或实习生招聘)。 Q:我可以投递几个岗…...
深入理解 Kibana 配置文件:一份详尽的指南
Kibana 是一个强大的数据可视化平台,它允许用户通过 Elasticsearch 轻松地探索和分析数据。Kibana 的配置文件 kibana.yml 是定制和优化 Kibana 行为的关键。在这篇博客中,我们将深入探讨 kibana.yml 文件中的各个配置项,并提供示例说明。 服…...

算法的学习笔记—链表中倒数第 K 个结点(牛客JZ22)
😀前言 在编程过程中,链表是一种常见的数据结构,它能够高效地进行插入和删除操作。然而,遍历链表并找到特定节点是一个典型的挑战,尤其是当我们需要找到链表中倒数第 K 个节点时。本文将详细介绍如何使用双指针技术来解…...

聊聊场景及场景测试
在我们进行测试过程中,有一种黑盒测试叫场景测试,我们完全是从用户的角度去理解系统,从而可以挖掘用户的隐含需求。 场景是指用户会使用这个系统来完成预定目标的所有情况的集合。 场景本身也代表了用户的需求,所以我们可以认为…...

Spring Web MVC入门(中)
1. 请求 访问不同的路径, 就是发送不同的请求. 在发送请求时, 可能会带⼀些参数, 所以学习Spring的请求, 主要 是学习如何传递参数到后端以及后端如何接收. 传递参数, 咱们主要是使⽤浏览器和Postman来模拟; 1.1 传递单个参数 接收单个参数,在Spring MV…...
Django后端架构开发:后台管理与会话技术详解
🌟 Django后端架构开发:后台管理与会话技术详解 🔹 后台管理:自定义模型类 Django的后台管理系统提供了强大的模型管理功能,你可以通过自定义模型类来控制模型在后台管理界面的显示和操作。自定义模型类通过继承admin…...
挑战Infiniband, 爆改Ethernet(2)
挑战Infiniband, 爆改Ethernet之物理层 前面说过UE为了挑战Infiniband在AI集群和HPC领域的优势地位,计划爆改以太网技术,以适应AI和HPC集群对高性能、可扩展网络的需求。正如UE联盟关于愿景的说明中宣称的:”提供一个完整的架构,通…...

Postman文件上传接口测试
接口介绍 返回示例 测试步骤 1.添加一个新请求,修改请求名,填写URL,选择请求方式 2.将剩下的media参数放在请求body里,选择form-data,选择key右边的类型为file类型,就会出现选择文件的按钮Select Files&a…...

stm32入门学习14-电源控制
有时候我们的程序中有些触发执行条件,有时这些触发频率很少,我们的程序就一直在循环,这样就很浪费电,我们可以通过PWR电源控制来实现低功耗模式,即只有在触发时才执行程序,其余时间可以关闭一些没必要的设备…...

[C++][opencv]基于opencv实现photoshop算法色相和饱和度调整
【测试环境】 vs2019 opencv4.8.0 【效果演示】 【核心实现代码】 HSL.hpp #ifndef OPENCV2_PS_HSL_HPP_ #define OPENCV2_PS_HSL_HPP_#include "opencv2/core.hpp" using namespace cv;namespace cv {enum HSL_COLOR {HSL_ALL,HSL_RED,HSL_YELLOW,HSL_GREEN,HS…...
Github 2024-08-16Java开源项目日报 Top10
根据Github Trendings的统计,今日(2024-08-16统计)共有10个项目上榜。根据开发语言中项目的数量,汇总情况如下: 开发语言项目数量Java项目10TypeScript项目1Ruby项目1Apache Dubbo: 高性能的Java开源RPC框架 创建周期:4441 天开发语言:Java协议类型:Apache License 2.0St…...

AI学习记录 - torch 的 matmul和dot的关联,也就是点乘和点积的联系
有用大佬们点点赞 1、两个一维向量点积 ,求 词A 与 词A 之间的关联度 2、两个词向量之间求关联度,求 : 词A 与 词A 的关联度 5 词A 与 词B 的关联度 11 词B 与 词A 的关联度 11 词B 与 词B 的关联度 25 刚刚好和矩阵乘法符合: 3、什么是…...

leetcode 885. Spiral Matrix III
题目链接 You start at the cell (rStart, cStart) of an rows x cols grid facing east. The northwest corner is at the first row and column in the grid, and the southeast corner is at the last row and column. You will walk in a clockwise spiral shape to visi…...

mysql windows安装与远程连接配置
安装包在主页资源中 一、安装(此安装教程为“mysql-installer-community-5.7.41.0.msi”安装教程,安装到win10环境) 保持默认选项,点击”Next“。 点开第一行加号展开一路展开找到“MySQL Server 5,7,41 - X64”点击选中点击一下中间只想右侧的箭头看到…...

子网掩码是什么以及子网掩码相关计算
子网掩码 (Subnet Mask) 又称网络掩码 (Netmask),告知主机或路由设备,地址的哪一部分是网络号,包括子网的网络号部分,哪一部分是主机号部分。 子网掩码使用与IP地址相同的编址格式,即32 bit—4个8位组的32位长格式。…...

仿RabbitMQ实现消息队列
前言:本项目是仿照RabbitMQ并基于SpringBoot Mybatis SQLite3实现的消息队列,该项目实现了MQ的核心功能:生产者、消费者、中间人、发布、订阅等。 源码链接:仿Rabbit MQ实现消息队列 目录 前言:本项目是仿照Rabbi…...

SpringBoot教程(二十三) | SpringBoot实现分布式定时任务之xxl-job
SpringBoot教程(二十三) | SpringBoot实现分布式定时任务之xxl-job 简介一、前置条件:需要搭建调度中心1、先下载调度中心源码2、修改配置文件3、启动项目4、进行访问5、打包部署(上正式) 二、SpringBoot集成Xxl-Job1.…...
微前端架构的数据持久化策略与实践
微前端架构通过将一个大型前端应用拆分成多个小型、自治的子应用,提升了开发效率和应用的可维护性。然而,数据持久化作为应用的基础需求,在微前端架构中实现起来面临着一些挑战。本文将详细介绍在微前端架构下实现数据持久化的策略、技术和最…...
挑战杯推荐项目
“人工智能”创意赛 - 智能艺术创作助手:借助大模型技术,开发能根据用户输入的主题、风格等要求,生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用,帮助艺术家和创意爱好者激发创意、提高创作效率。 - 个性化梦境…...

深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录
ASP.NET Core 是一个跨平台的开源框架,用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录,以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...
2024年赣州旅游投资集团社会招聘笔试真
2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...
系统设计 --- MongoDB亿级数据查询优化策略
系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log,共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题,不能使用ELK只能使用…...
【C语言练习】080. 使用C语言实现简单的数据库操作
080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...

《基于Apache Flink的流处理》笔记
思维导图 1-3 章 4-7章 8-11 章 参考资料 源码: https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...

以光量子为例,详解量子获取方式
光量子技术获取量子比特可在室温下进行。该方式有望通过与名为硅光子学(silicon photonics)的光波导(optical waveguide)芯片制造技术和光纤等光通信技术相结合来实现量子计算机。量子力学中,光既是波又是粒子。光子本…...
【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题
【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要: 近期,在使用较新版本的OpenSSH客户端连接老旧SSH服务器时,会遇到 "no matching key exchange method found", "n…...
MySQL 部分重点知识篇
一、数据库对象 1. 主键 定义 :主键是用于唯一标识表中每一行记录的字段或字段组合。它具有唯一性和非空性特点。 作用 :确保数据的完整性,便于数据的查询和管理。 示例 :在学生信息表中,学号可以作为主键ÿ…...
Vite中定义@软链接
在webpack中可以直接通过符号表示src路径,但是vite中默认不可以。 如何实现: vite中提供了resolve.alias:通过别名在指向一个具体的路径 在vite.config.js中 import { join } from pathexport default defineConfig({plugins: [vue()],//…...