当前位置: 首页 > news >正文

Diffusion Model相关论文解析之(二)DENOISING DIFFUSION IMPLICIT MODELS

目录

  • 1、摘要
  • 2、创新点
  • 3、主要公式
  • 4、自己的理解,对错不确定

1、摘要

‌Denoising Diffusion Implicit Models (DDIM)‌是一种扩散模型的改进版本,旨在加速采样过程并提高采样速度。DDIM通过引入非马尔可夫扩散过程,相对于传统的去噪扩散概率模型(DDPM),能够在10到50倍的速度下生成高质量的样本。这种加速不仅提高了生成模型的实用性,还为创意表达开辟了新的可能性。

2、创新点

DDIM的核心思想在于通过一类非马尔可夫扩散过程来泛化DDPM,这些非马尔可夫过程可以对应于确定性的生成过程,从而能够更快地产生高质量样本。与DDPM相比,DDIM在保持相同训练目标的同时,允许直接在潜在空间中进行有语义意义的图像插值,并以极低的误差重建观测结果。这种改进使得DDIM在文生图和文生视频等应用中表现出色,显著提高了这些先进技术的实用性和可达性。

DDIM的提出解决了DDPM的一个主要限制,即通过模拟多步骤的马尔可夫链来生成每个样本的过程相对耗时。通过引入非马尔可夫过程,DDIM能够更高效地生成样本,同时保持样本的高质量

3、主要公式

在这里插入图片描述
在这里插入图片描述

4、自己的理解,对错不确定

在这里插入图片描述

在这里插入图片描述
为什么可以这样做?
DDIM不是马尔可夫链,把所有时间步方差=0,高斯噪声的随机性被移除了,变成了确定性的结果,
DDPM是马尔可夫链,方差每次是随机的,

相关文章:

Diffusion Model相关论文解析之(二)DENOISING DIFFUSION IMPLICIT MODELS

目录 1、摘要2、创新点3、主要公式4、自己的理解,对错不确定 1、摘要 ‌Denoising Diffusion Implicit Models (DDIM)‌是一种扩散模型的改进版本,旨在加速采样过程并提高采样速度。DDIM通过引入非马尔可夫扩散过程,相对于传统的去噪扩散概率…...

【STM32嵌入式系统设计与开发拓展】——14_定时器之输入捕获

参考哔站:链接: 铁头山羊 一、微控制器的高级定时与控制功能集合 1、时基单元 2、输入捕获 3、输出比较 4、从模式控制器 5、高级定时器的输出控制 二、问题集合 1、什么是定时器 定时器是一种专门负责定时功能的片上外设GPI0AFI0EXTIUSART RCC I2C) 2、定时器…...

docker swarm如何让两个副本分别跑在两台不同的主机上

虽然 docker swarm 支持自动扩容部署,但是为了服务的稳定性、可靠性,有的时候甲方巴巴会要求一定要服务分散部署在不同的服务器上。 使用默认的部署方式,虽然副本为 N,但是部署的 N 个服务可能落在同一台服务器上。 在 Docker Swa…...

GPT助手的训练流程四个主要阶段( GPT Assistant training pipeline )

GPT助手的训练流程四个主要阶段( GPT Assistant training pipeline ) flyfish 四个阶段 预训练(pre-training) 监督微调(supervised fine tuning, SFT) 奖励建模(reward modeling&#xff09…...

网络如何发送一个数据包

网络如何发送一个数据包 网络消息发送就是点一点屏幕。 骚瑞,这一点都不好笑。(小品就是我的本质惹) 之前我就是会被这个问题搞的不安宁。是怎么知道对方的IP地址的呢?怎么知道对方的MAC呢?世界上计算机有那么多&…...

【Harmony OS 4.0】向上滑动加载案例

// 自定义class类对象类型 class Article {public id: numberpublic title: stringpublic content: stringconstructor(id: number, title: string, content: string) {this.id idthis.title titlethis.content content} }// 子组件 Component struct ArticleComponent {Pro…...

SQL基础教程(八)SQL高级处理

※食用指南:文章内容为《SQL基础教程》系列学习笔记,该书对新手入门非常友好,循序渐进,浅显易懂,本人主要用来补全学习MySQL中未涉及的部分,便于刷题和做项目。 官方电子书:《SQL基础教程》第2…...

[论文笔记] Data-Juicer: A One-Stop Data Processing System for Large Language Models

https://arxiv.org/pdf/2309.02033 GitHub - modelscope/data-juicer: A one-stop data processing system to make data higher-quality, juicier, and more digestible for (multimodal) LLMs! 🍎 🍋 🌽 ➡️ ➡️🍸 🍹 🍷为大模型提供更高质量、更丰富、更易”…...

期末速成复习资料——操作系统

体型:选择20判断10填空10*2简答4*5计算2*10 第一章 在一个计算机系统中,通常都含有多种硬件和软件资源。归纳起来可将这些资源分为四类:处理机、存储器、I/O设备以及文件(数据和程序)。相应地,OS的主要功能…...

Android之Service与IntentService区别

目录 Service特点使用场景示例 IntentService特点使用场景示例 区别总结线程管理:生命周期:使用场景:自动停止: 总结 在Android开发中,Service是一个可以在后台执行长时间运行操作的组件。主要有两种类型的Service&…...

【MySQL】表的设计

系列文章目录 第一章 数据库基础 第二章 数据库基本操作 第三章数据库约束 文章目录 系列文章目录前言一、表的设计二、表的关系总结 前言 在前文中,我们学会了基本的CRUD操作,对数据库中的数据进行约束以提高数据库的准确性。接下来介绍的表的设计就是…...

NC 用两个栈实现队列

系列文章目录 文章目录 系列文章目录前言 前言 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站,这篇文章男女通用,看懂了就去分享给你的码吧。 描述 用两个栈来实…...

用后端实现一个简单的登录模块2 前端页面

该模块能做到的功能: 1阶:输入账号和密码,输入正确即可返回登录成功的信息,反之则登录失败 2阶:有简单的前端页面,有登录成功和失败的弹窗,还有登录成功的主页面 3阶:前端页面的注…...

MySQL慢查询的查找语法

一、引言 数据库查询快慢是影响项目性能的一大因素,对于数据库,我们除了要优化SQL,更重要的是得先找到需要优化的SQL语句。 性能优化的思路 首先需要使用慢查询功能,去获取所有查询时间比较长的SQL语句其次使用explain命令去查…...

SQL中的聚合方法与Pandas的对应关系

在SQL和Pandas中,聚合方法是用来对数据进行汇总统计的重要工具。下面是SQL中的各种聚合方法及其与Pandas中相应操作的对应关系: 1. COUNT SQL: COUNT(*) 返回表中的行数。COUNT(column) 返回指定列中非空值的数量。 Pandas: count() 方法用于计算非空值…...

计算机毕业设计选题推荐-计算中心高性能集群共享平台-Java/Python项目实战

✨作者主页:IT毕设梦工厂✨ 个人简介:曾从事计算机专业培训教学,擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。 ☑文末获取源码☑ 精彩专栏推荐⬇⬇⬇ Java项目 Py…...

仿RabbitMq实现简易消息队列基础篇(future操作实现异步线程池)

TOC 介绍 std::future 是C11标准库中的一个模板类,他表示一个异步操作的结果,当我们在多线程编程中使用异步任务时,std::future可以帮助我们在需要的时候,获取任务的执行结果,std::future 的一个重要特性是能…...

经典算法题总结:数组常用技巧(双指针,二分查找和位运算)篇

双指针 在处理数组和链表相关问题时,双指针技巧是经常用到的,双指针技巧主要分为两类:左右指针和快慢指针。所谓左右指针,就是两个指针相向而行或者相背而行;而所谓快慢指针,就是两个指针同向而行&#xf…...

版本控制基础理论

一、本地版本控制 在本地记录文件每次的更新,可以对每个版本做一个快照,或是记录补丁文件,适合个人使用,如RCS. 二、集中式版本控制(代表SVN) 所有的版本数据都保存在服务器上,协同开发者从…...

微分方程(Blanchard Differential Equations 4th)中文版Section1.4

1.4 NUMERICAL TECHNIQUE: EULER’S METHOD 上一节中讨论的斜率场的几何概念与近似微分方程解的基本数值方法密切相关。给定一个初值问题 d y d t = f ( t , y ) , y ( t 0 ) = y 0 , \frac{dy}{dt}=f(t,y), \quad y(t_0) = y_0, dtdy​=f(t,y),y(t0​)=y0​, 我们可以通过首…...

iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘

美国西海岸的夏天,再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至,这不仅是开发者的盛宴,更是全球数亿苹果用户翘首以盼的科技春晚。今年,苹果依旧为我们带来了全家桶式的系统更新,包括 iOS 26、iPadOS 26…...

DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径

目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

React第五十七节 Router中RouterProvider使用详解及注意事项

前言 在 React Router v6.4 中&#xff0c;RouterProvider 是一个核心组件&#xff0c;用于提供基于数据路由&#xff08;data routers&#xff09;的新型路由方案。 它替代了传统的 <BrowserRouter>&#xff0c;支持更强大的数据加载和操作功能&#xff08;如 loader 和…...

通过Wrangler CLI在worker中创建数据库和表

官方使用文档&#xff1a;Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后&#xff0c;会在本地和远程创建数据库&#xff1a; npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库&#xff1a; 现在&#xff0c;您的Cloudfla…...

【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表

1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...

AI编程--插件对比分析:CodeRider、GitHub Copilot及其他

AI编程插件对比分析&#xff1a;CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展&#xff0c;AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者&#xff0c;分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...

Android15默认授权浮窗权限

我们经常有那种需求&#xff0c;客户需要定制的apk集成在ROM中&#xff0c;并且默认授予其【显示在其他应用的上层】权限&#xff0c;也就是我们常说的浮窗权限&#xff0c;那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列&#xff0c;以便知晓哪些列包含有价值的数据&#xff0c;…...

中医有效性探讨

文章目录 西医是如何发展到以生物化学为药理基础的现代医学&#xff1f;传统医学奠基期&#xff08;远古 - 17 世纪&#xff09;近代医学转型期&#xff08;17 世纪 - 19 世纪末&#xff09;​现代医学成熟期&#xff08;20世纪至今&#xff09; 中医的源远流长和一脉相承远古至…...

浪潮交换机配置track检测实现高速公路收费网络主备切换NQA

浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求&#xff0c;本次涉及的主要是收费汇聚交换机的配置&#xff0c;浪潮网络设备在高速项目很少&#xff0c;通…...