当前位置: 首页 > news >正文

最强的Python可视化神器,你有用过么?

数据分析离不开数据可视化,我们最常用的就是Pandas,Matplotlib,Pyecharts当然还有Tableau,看到一篇文章介绍Plotly制图后我也跃跃欲试,查看了相关资料开始尝试用它制图。

1、Plotly

Plotly是一款用来做数据分析和可视化的在线平台,功能非常强大,可以在线绘制很多图形比如条形图、散点图、饼图、直方图等等。

而且还是支持在线编辑,以及多种语言Python、Javascript、Matlab、R等许多API。

它在Python中使用也很简单,直接用Pip Install Plotly就可以了。

推荐最好在Jupyter notebook中使用,Pycharm操作不是很方便。

使用Plotly可以画出很多媲美Tableau的高质量图:

Plotly制图

我尝试做了折线图、散点图和直方图,首先导入库:

from plotly.graph_objs import Scatter,Layout
import plotly
import plotly.offline as py
import numpy as np
import plotly.graph_objs as go
#setting offilne 离线模式
plotly.offline.init_notebook_mode(connected=True)

上面几行代码主要是引用一些库,Plotly有在线和离线两种模式,在线模式需要有账号可以云编辑。

我选用的离线模式,Plotly设置为Offline模式就可以直接在Notebook里面显示了。

2、制作折线图

N = 100
random_x = np.linspace(0,1,N)
random_y0 = np.random.randn(N)+5
random_y1 = np.random.randn(N)
random_y2 = np.random.randn(N)-5#Create traces
trace0 = go.Scatter(x = random_x,y = random_y0,mode = 'markers',name = 'markers'
)
trace1 = go.Scatter(x = random_x,y = random_y1,mode = 'lines+markers',name = 'lines+markers'
)
trace2 = go.Scatter(x = random_x,y = random_y2,mode = 'lines',name = 'lines'
)
data = [trace0,trace1,trace2]
py.iplot(data)

折线图

随机设置4个参数,一个x轴的数字和三个y轴的随机数据,制作出三种不同类型的图。

Trace0是Markers,Trace1是Lines和Markers,Trace3是Lines。

然后把三种图放在Data这个列表里面,调用py.iplot(data)即可。绘制的图片系统默认配色也挺好看的~/

3、制作散点图

trace1 = go.Scatter(y = np.random.randn(500),mode = 'markers',marker = dict(size = 16,color = np.random.randn(500),colorscale = 'Viridis',showscale = True)
)
data = [trace1]
py.iplot(data)

把Mode设置为Markers就是散点图,然后Marker里面设置一组参数,比如颜色的随机范围,散点的大小,还有图例等等。

4、直方图

trace0 = go.Bar(x = ['Jan','Feb','Mar','Apr', 'May','Jun','Jul','Aug','Sep','Oct','Nov','Dec'],y = [20,14,25,16,18,22,19,15,12,16,14,17],name = 'Primary Product',marker=dict(color = 'rgb(49,130,189)')
)
trace1 = go.Bar(x = ['Jan','Feb','Mar','Apr', 'May','Jun','Jul','Aug','Sep','Oct','Nov','Dec'],y = [19,14,22,14,16,19,15,14,10,12,12,16],name = 'Secondary Product',marker=dict(color = 'rgb(204,204,204)')
)
data = [trace0,trace1]
py.iplot(data)

直方图是我们比较常用的一种图形,Plotly绘制直方图的方式跟我们在Pandas里面设置的有点类似,它们非常直观的体现了不同月份两个生产力之间的差异。

上面的制图只是Plotly的冰山一角,都是一些最基本的用法,它还有很多很酷的用法和图形,尤其是跟Pandas结合画的图非常漂亮。

比如一些股票的K线图,大家有兴趣可以研究研究~

数据分析入门:

  黑马程序员MySQL知识精讲+mysql实战案例

3天从零快速搭建BI商业大数据分析平台_li

  黑马程序员MySQL知识精讲+mysql实战案例


 

大数据基础-TiDB数据库从入门到实践_


 

大数据入门教程,非常适合小白的大数据自学课程_i

相关文章:

最强的Python可视化神器,你有用过么?

数据分析离不开数据可视化,我们最常用的就是Pandas,Matplotlib,Pyecharts当然还有Tableau,看到一篇文章介绍Plotly制图后我也跃跃欲试,查看了相关资料开始尝试用它制图。 1、Plotly Plotly是一款用来做数据分析和可视…...

Ubuntu使用vnc远程桌面【远程内网穿透】

文章目录1.前言2.两台互联电脑的设置2.1 Windows安装VNC2.2 Ubuntu安装VNC2.3.Ubuntu安装cpolar3.Cpolar设置3.1 Cpolar云端设置3.2.Cpolar本地设置4.公网访问测试5.结语1.前言 记得笔者刚刚开始接触电脑时,还是win95/98的时代,那时的电脑桌面刚迈入图形…...

【C++】map、set、multimap、multiset的介绍和使用

我讨厌世俗&#xff0c;也耐得住孤独。 文章目录一、键值对二、树形结构的关联式容器1.set1.1 set的介绍1.2 set的使用1.3 multiset的使用2.map2.1 map的介绍2.2 map的使用2.3 multimap的使用三、两道OJ题1.前K个高频单词&#xff08;less<T>小于号是小的在左面升序&…...

css学习14(多媒体查询)

目录 多媒体查询 语法 示例代码 通用媒体查询 媒体功能参考列表 多媒体查询 CSS的媒体查询是一种CSS的技术&#xff0c;它可以根据不同的设备类型、屏幕尺寸、方向、分辨率等条件来应用不同的CSS样式&#xff0c;从而为不同的设备和屏幕提供最佳的浏览体验。这样&#xff…...

【C++进阶】C++11(中)左值引用和右值引用

文章目录左值引用左值引用的概念左值引用的使用右值引用右值引用的概念右值引用的使用左右值相互引用左值引用对右值进行引用右值引用对左值进行引用右值引用使用场景和意义左值引用的优势左值引用的短板右值引用的优势完美转发模板万能引用完美转发实际运用场景左值引用 左值…...

Python中的生成器【generator】总结,看看你掌握了没?

人生苦短&#xff0c;我用python python 安装包资料:点击此处跳转文末名片获取 1.实现generator的两种方式 python中的generator保存的是算法&#xff0c; 真正需要计算出值的时候才会去往下计算出值。 它是一种惰性计算&#xff08;lazy evaluation&#xff09;。 要创建一个…...

MD5加密竟然不安全,应届生表示无法理解?

前言 近日公司的一个应届生问我&#xff0c;他做的一个毕业设计密码是MD5加密存储的&#xff0c;为什么密码我帮他调试的时候&#xff0c;我能猜出来明文是什么&#xff1f; 第六感&#xff0c;是后端研发的第六感&#xff01; 正文 示例&#xff0c;有个系统&#xff0c;前…...

【Linux】虚拟地址空间

进程地址空间一、引入二、虚拟地址与物理内存的联系三、为什么要有虚拟地址空间一、引入 对于C/C程序&#xff0c;我们眼中的内存是这样的&#xff1a; 我们利用这种对于与内存的理解看一下下面这段代码&#xff1a; 运行结果&#xff1a; 观察父子进程中 val 变量的值&…...

四平方和题解(二分习题)

四平方和 暴力做法 Y总暴力做法&#xff0c;蓝桥云里能通过所有数据 总结&#xff1a;暴力也分好坏&#xff0c;下面这份代码就是写的好的暴力 如何写好暴力:1. 按组合枚举 2. 写好循环结束条件&#xff0c;没必要循环那么多次 #include<iostream> #include<cmath>…...

一篇文章搞定js正则表达式

我们测试正则表达式是否正确的方法有很多&#xff0c;例如通过正则表达式找到拼配的字符串&#xff1a; 在vscode编辑器中点击搜索框中的第三个按钮就可以实现&#xff1a; 或者 在浏览器中的控制台也可以实现&#xff1a; 我们可以通过下面的在线网站来测试你写的正则是否正确…...

[数据结构] 用两个队列实现栈详解

文章目录 一、队列实现栈的特点分析 1、1 具体分析 1、2 整体概括 二、队列模拟实现栈代码的实现 2、1 手撕 队列 代码 queue.h queue.c 2、2 用队列模拟实现栈代码 三、总结 &#x1f64b;‍♂️ 作者&#xff1a;Ggggggtm &#x1f64b;‍♂️ &#x1f440; 专栏&#xff1…...

官宣|Apache Flink 1.17 发布公告

Apache Flink PMC&#xff08;项目管理委员&#xff09;很高兴地宣布发布 Apache Flink 1.17.0。Apache Flink 是领先的流处理标准&#xff0c;流批统一的数据处理概念在越来越多的公司中得到认可。得益于我们出色的社区和优秀的贡献者&#xff0c;Apache Flink 在 Apache 社区…...

动态内存管理+动态通讯录【C进阶】

文章目录为什么存在动态内存分配❓&#x1f449;动态内存函数&#x1f448;malloc&freecallocrealloc❌常见的动态内存错误❌练习题&#x1fae0;C/C程序的内存开辟&#x1f914;柔性数组柔性数组的特点柔性数组的优势:star:动态通讯录:star:初始化添加销毁为什么存在动态内…...

基于pytorch+Resnet101加GPT搭建AI玩王者荣耀

本源码模型主要用了SamLynnEvans Transformer 的源码的解码部分。以及pytorch自带的预训练模型"resnet101-5d3b4d8f.pth"本资源整理自网络&#xff0c;源地址&#xff1a;https://github.com/FengQuanLi/ResnetGPT注意运行本代码需要注意以下几点 注意&#xff01;&a…...

多线程控制讲解与代码实现

多线程控制 回顾一下线程的概念 线程是CPU调度的基本单位&#xff0c;进程是承担分配系统资源的基本单位。linux在设计上并没有给线程专门设计数据结构&#xff0c;而是直接复用PCB的数据结构。每个新线程&#xff08;task_struct{}中有个指针都指向虚拟内存mm_struct结构&am…...

清晰概括:进程与线程间的区别的联系

相关阅读&#xff1a; &#x1f517;通俗简介&#xff1a;操作系统之进程的管理与调度&#x1f517;如何使用 jconsole 查看Java进程中线程的详细信息&#xff1f; 目录 一、进程与线程 1、进程 2、线程 二、进程与线程之间的区别和联系 1、区别 2、联系 一、进程与线程 …...

自定义类型 (结构体)

文章目录&#x1f4ec;结构体的声明&#x1f50e;1.结构的基础知识&#x1f50e;2.结构的声明&#x1f50e;3.特殊的声明&#x1f50e;4.结构的自引用&#x1f50e;5.结构体变量的定义和初始化&#x1f50e;6.结构体内存对齐&#x1f50e;7.修改默认对齐数&#x1f50e;8.结构体…...

第14届蓝桥杯STEMA测评真题剖析-2023年3月12日Scratch编程初中级组

[导读]&#xff1a;超平老师的《Scratch蓝桥杯真题解析100讲》已经全部完成&#xff0c;后续会不定期解读蓝桥杯真题&#xff0c;这是Scratch蓝桥杯真题解析第113讲。 蓝桥杯选拔赛现已更名为STEMA&#xff0c;即STEM 能力测试&#xff0c;是蓝桥杯大赛组委会与美国普林斯顿多…...

程序员接私活一定要知道的事情,我走的弯路你们都别走了

文章目录前言一、程序员私活的种类1.兼职职位众包2.自由职业者驻场3.项目整包二、这3种私活可以接1.有熟人2.七分熟的项目3.需求明确的项目三、这3种私活不要接1.主动找上门的中介单2.一味强调项目简单好做3.外行人给你拉的项目四、接单的渠道1.线下渠道2.线上渠道3.比较靠谱的…...

十二届蓝桥杯省赛c++(下)

1、 拿到题目一定要读懂题意&#xff0c;不要看到这题目就上来模拟什么闰年&#xff0c;一月的天数啥的。这个题目问你当天的时间&#xff0c;就说明年月日跟你都没关系&#xff0c;直接无视就好了。 #include <iostream> #include <cstring> #include <algori…...

数据结构与算法——堆的基本存储

目录 一、概念及其介绍 二、适用说明 三、结构图示 四、Java 实例代码 五.堆和栈的区别 一、概念及其介绍 堆(Heap)是计算机科学中一类特殊的数据结构的统称。 堆通常是一个可以被看做一棵完全二叉树的数组对象。 堆满足下列性质&#xff1a; 堆中某个节点的值总是不大…...

来了来了 !!!K8s指令、yaml部署

文章目录k8s资源清单一、k8s资源指令1、基础操作2、命令手册二、资源清单1、required2、optional3、other4、资源清单格式5、常用命令三、部署实例1、nginx3、eureka部署k8s资源清单 一、k8s资源指令 1、基础操作 #创建且运行一个pod #deployment、rs、pod被自动创建 kubect…...

spring-cloud-feign实战笔记

feign 配置 针对单个feign接口进行配置feign:client:config:# feignName 注意这里与contextId一致&#xff0c;不能写成name&#xff08;FeignClientFactoryBean#configureFeign&#xff09;# 不能写成 client-b (微服务名称)&#xff0c;否则不生效helloFeignClient: # conte…...

【Pytorch】利用PyTorch实现图像识别

本文参加新星计划人工智能(Pytorch)赛道&#xff1a;https://bbs.csdn.net/topics/613989052 这是目录使用torchvision库的datasets类加载常用的数据集或自定义数据集使用torchvision库进行数据增强和变换&#xff0c;自定义自己的图像分类数据集并使用torchvision库加载它们使…...

在家查找下载最新《柳叶刀》The Lancet期刊文献的方法

《柳叶刀》The Lancet简介&#xff1a; 《柳叶刀》The Lancet是全球顶尖综合性医学期刊&#xff0c;每周都会发表来自世界各地顶尖科学家的研究精粹。是由托马斯威克利&#xff08;Thomas Wakley&#xff09;创办于1823年&#xff0c;由爱思唯尔&#xff08;Elsevier&#xff…...

当下的网络安全行业前景到底怎么样?还能否入行?

前言网络安全现在是朝阳行业&#xff0c;缺口是很大。不过网络安全行业就是需要技术很多的人达不到企业要求才导致人才缺口大常听到很多人不知道学习网络安全能做什么&#xff0c;发展前景好吗&#xff1f;今天我就在这里给大家介绍一下。网络安全作为目前比较火的朝阳行业&…...

SpringCloud:SpringAMQP介绍

Spring AMQP是基于RabbitMQ封装的一套模板&#xff0c;并且还利用SpringBoot对其实现了自动装配&#xff0c;使用起来非常方便。Spring AMQP官方地址 Spring AMQP提供了三个功能&#xff1a; 自动声明队列、交换机及其绑定关系基于注解的监听器模式&#xff0c;异步接收消息封…...

第十三届蓝桥杯省赛 python B组复盘

文章目录前言主要内容&#x1f99e;试题 A&#xff1a;排列字母思路代码&#x1f99e;试题 B&#xff1a;寻找整数思路代码&#x1f99e;试题 C&#xff1a;纸张尺寸思路代码&#x1f99e;试题 D&#xff1a;数位排序思路代码&#x1f99e;试题 E&#xff1a;蜂巢思路代码&…...

SQL注入之HTTP请求头注入

Ps&#xff1a; 先做实验&#xff0c;在有操作的基础上理解原理会更清晰更深入。 一、实验 sqli-lab 1. User-Agent注入 特点&#xff1a;登陆后返回用户的 User-Agent --> 服务器端可能记录用户User-Agent 输入不合法数据报错 payload: and updatexml(1,concat("~&…...

Metasploit详细教程

第一步&#xff1a;安装和启动Metasploit 您可以从Metasploit官方网站下载适用于您操作系统的Metasploit框架。安装Metasploit框架后&#xff0c;您可以使用以下命令来启动Metasploit&#xff1a; msfconsole该命令将启动Metasploit控制台。 第二步&#xff1a;查找目标设备…...