迁移学习代码复现
一、前言
说来可能令人难以置信,迁移学习技术在实践中是非常简单的,我们仅需要保留训练好的神经网络整体或者部分网络,再在使用迁移学习的情况下把保留的模型重新加载到内存中,就完成了迁移的过程。之后,我们就可以像训练普通神经网络那样训练迁移过来的神经网络了。
我们使用已经训练好的大型图像分类卷积神经网络来做一个分类任务:区分画面上的动物是蚂蚁还是蜜蜂。
二、数据导入
将蚂蚁蜜蜂数据集进行一些(增强)图形处理,如随机从原始图像中切下来一块224×224大小的区域,随机水平翻转图像,将图像的色彩数值标准化等等。数据增强的目的是:增强模型的鲁棒性,提高模型的泛化能力和性能。
1、导入相应的函数库
# 加载程序所需要的包
#import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import copy
import os
导入蚂蚁蜜蜂数据集,并将这些照片进行一定的照片增强处理,最后以data_loader的形式存储。注:该代码是在kaggle上进行训练,所以data_dir是kaggle中input存储的位置,运行时,需根据具体情况修改文件路径。
# 数据存储总路径
data_dir = '/kaggle/input/bees-and-ants/蚂蚁蜜蜂数据集'
# 图像的大小为224×224
image_size = 224
# 加载的过程将会对图像进行如下增强操作:
# 1. 随机从原始图像中切下来一块224×224大小的区域
# 2. 随机水平翻转图像
# 3. 将图像的色彩数值标准化
train_dataset = datasets.ImageFolder(os.path.join(data_dir, 'train'),transforms.Compose([transforms.RandomResizedCrop(image_size),transforms.RandomHorizontalFlip(),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]))# 加载校验数据集,对每个加载的数据进行如下处理:
# 1. 放大到256×256
# 2. 从中心区域切割下224×224大小的区域
# 3. 将图像的色彩数值标准化
val_dataset = datasets.ImageFolder(os.path.join(data_dir, 'val'),transforms.Compose([transforms.Resize(256),transforms.CenterCrop(image_size),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]))
# 创建相应的数据加载器
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size = 4, shuffle = True, num_workers=4)
val_loader = torch.utils.data.DataLoader(val_dataset, batch_size = 4, shuffle = True, num_workers=4)
# 读取得出数据中的分类类别数
num_classes = len(train_dataset.classes)
2、展示部分照片
数据存储在train_loader(val_loader)的迭代器中,其中imgs是以数字的形式展示。在 PyTorch 中,图像数据通常以 (C, H, W) 的顺序存储,其中 C 是颜色通道数(例如 RGB 的 3 个通道),H 是图像的高度,W 是图像的宽度。然而,matplotlib 的 imshow 函数期望的图像数据是 (H, W, C) 顺序的,即高度和宽度作为前两个维度,颜色通道作为最后一个维度。所以img_np是通过通道转换后的照片(同时也通过Normalize标准化后的照片),imgs[0][0]是灰度的照片。
imgs,label=next(iter(train_loader))
fig,ax=plt.subplots(1,2,figsize=(12,6))
# 展示标准化后的照片
img_np = imgs[0].permute(1, 2, 0).numpy()
ax[0].imshow(img_np)
# 展示标准化后的照片
ax[1].imshow(imgs[0][0])
plt.show()
原图如下:
图如下:
三、使用自定义的模型进行训练
1、定义模型
自定义卷积神经网络模型,并确定前向传播每层之间的连接方式。
# 使用自定义的CNN模型
depth = [4, 8]
class ConvNet(nn.Module):def __init__(self):super(ConvNet, self).__init__()self.conv1 = nn.Conv2d(3, 4, 5, padding = 2) #输入通道为3,输出通道为4,窗口大小为5,padding为2self.pool = nn.MaxPool2d(2, 2) #一个窗口为2*2的pooling运算self.conv2 = nn.Conv2d(depth[0], depth[1], 5, padding = 2) #第二层卷积,输入通道为depth[0], 输出通道为depth[1],窗口为15,padding为2
相关文章:

迁移学习代码复现
一、前言 说来可能令人难以置信,迁移学习技术在实践中是非常简单的,我们仅需要保留训练好的神经网络整体或者部分网络,再在使用迁移学习的情况下把保留的模型重新加载到内存中,就完成了迁移的过程。之后,我们就可以像训练普通神经网络那样训练迁移过来的神经网络了。 我们…...
Elasticsearch(ES)常用命令
常用运维命令 一、基本命令1.1、查看集群的健康状态1.2、查看节点信息1.3、查看索引列表1.4、创建索引1.5、删除索引1.6、关闭索引1.7、打开索引1.8、查看集群资源使用情况(各个节点的状态,包括磁盘,heap,ram的使用情况࿰…...

C/C++ 不定参函数
C语言不定参函数 函数用法总结 Va_list 作用:类型定义,生命一个变量,该变量被用来访问传递给不定参函数的可变参数列表用法:供后续函数进调用,通过该变量访问参数列表 typedefchar* va_list; va_start 作用ÿ…...

C语言——函数专题
1.概念 在C语言中引入函数的概念,有些翻译为子程序。C语言中的函数就是一个完成某项特定任务的一小段代码,这个代码是有特殊的写法和调用方法的。一般我们可以分为两种函数:库函数和自定义函数。 2.库函数 C语言国际标准ANSIC规定了一些常…...
springboot打可执行jar包
1. pom文件如下 <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation"http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"><m…...

【SQL】科目种类
目录 题目 分析 代码 题目 表: Teacher ------------------- | Column Name | Type | ------------------- | teacher_id | int | | subject_id | int | | dept_id | int | ------------------- 在 SQL 中,(subject_id, dept_id) 是该表的主键。 该表…...

【深度学习】【语音】TTS,最新TTS模型概览,扩散模型TTS,MeloTTS、StyleTTS2、Matcha-TTS
文章目录 基础介绍对比基础介绍 MeloTTS: MeloTTS 是 MyShell.ai 开发的一个多语言语音合成模型,支持包括英语、西班牙语、法语、中文、日语和韩语等多种语言。它以高质量的语音合成为特色,尤其擅长处理中英混合内容。该模型优化了在 CPU 上的实时推理能力,使其在多种应用场…...

【论文笔记】LION: Linear Group RNN for 3D Object Detection in Point Clouds
原文链接:https://arxiv.org/abs/2407.18232 简介:Transformer在3D点云感知任务中有二次复杂度,难以进行长距离关系建模。线性RNN则计算复杂度较低,适合进行长距离关系建模。本文提出基于窗口的网络线性组RNN(即对分组…...

打造高可用集群的基石:深度解析Keepalived实践与优化
高可用集群 集群类型 集群类型主要分为负载均衡集群(LB)、高可用集群(HA)和高性能计算集群(HPC)三大类。每种集群类型都有其特定的应用场景和优势。 1. 负载均衡集群(LB) 负载均衡集…...

Web大学生网页作业成品——环保主题介绍网页网站设计与实现(HTML+CSS)(5个页面)
🎉🎉🎉 常见网页设计作业题材有**汽车、环保、明星、文化、国家、抗疫、景点、人物、体育、植物、公益、图书、节日、游戏、商城、旅游、家乡、学校、电影、动漫、非遗、动物、个人、企业、美食、婚纱、其他**等网页设计题目, 可满足大学生网…...

Qt登录窗口设计
widget.h #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QIcon> //图标类 #include <QPushButton> #include <QLineEdit> //行编辑 #include <QLabel> #include <QTextEdit> #include <QMovie>class Widge…...

探索数据矿藏:我的AI大模型与数据挖掘实战经验分享
🚀 探索数据矿藏:我的AI大模型与数据挖掘实战经验分享 💖 前言:数据的金矿,AI的翅膀 在人工智能的浪潮中,我有幸作为项目负责人,带领团队深入挖掘数据的潜力,利用AI大模型的力量&am…...
linux C语言strcat函数及相关函数
讯飞星火 strcat函数是C语言中的一个字符串处理函数,用于将一个字符串追加到另一个字符串的末尾。它的原型如下: char *strcat(char *dest, const char *src);参数说明: dest:目标字符串,即要将src字符串追加到这个字符串的末尾。src:源字符串,即要追加到dest字符串末…...
使用 sort 进行文本文件处理
sort 使用经验笔记 一、简介 sort 是一个命令行工具,用于对文本文件中的行进行排序。它广泛应用于 Unix/Linux 系统中,可以用来对文件的内容进行简单的排序操作,也可以与其他命令结合使用来完成更复杂的任务。 二、基本用法 排序文件: sor…...

HarmonyOS笔记4:从云数据库获取数据
移动应用获取数据的方式主要有: 1.从网络中获取数据接口API。 2.从华为云数据库获取云数据库的资源。 3.从移动终端直接获取本地的数据 在HarmonyOS笔记3中已经完成了方式一从网络中获取数据接口API的方式。在本篇笔记中,将讨论从云数据库中获取数据。 因…...

QT5生成独立运行的exe文件
目录 1 生成独立运行的exe文件1.1 设置工程Release版本可执行文件存储路径1.2 将工程编译成Release版本 2 使用QT5自带的windeployqt拷贝软件运行依赖项3 将程序打包成一个独立的可执行软件exe4 解决QT5 This application failed to start because no Qt platform plugin could…...

LabVIEW光纤水听器闭环系统
开发了一种利用LabVIEW软件开发的干涉型光纤水听器闭环工作点控制系统。该系统通过调节光源频率和非平衡干涉仪的光程差,实现了工作点的精确控制,从而提高系统的稳定性和检测精度,避免了使用压电陶瓷,使操作更加简便。 项目背景 …...
Shell——流程控制语句(if、case、for、while等)
在 Shell 编程中,流程控制语句用于控制脚本的执行顺序和逻辑。这些语句包括 if、case、for、while 等,它们的使用可以使脚本实现更复杂的逻辑。以下是它们的详细说明和语法结构: 1. if 语句 if 语句用于条件判断,执行符合条件的…...

【redis的大key问题】
在使用 Redis 的过程中,如果未能及时发现并处理 Big keys(下文称为“大Key”),可能会导致服务性能下降、用户体验变差,甚至引发大面积故障。 本文将介绍大Key产生的原因、其可能引发的问题及如何快速找出大Key并将其优…...

HighPoint SSD7749M2:128TB NVMe 存储卡实现28 GB/s高速传输
HighPoint Technologies推出了一款全新的SSD7749M2 RAID卡,能够在标准的桌面工作站中安装多达16个M.2 SSD,实现高达128TB的闪存存储。该卡通过PCIe Gen4 x16接口提供高达28 GB/s的顺序读写性能。这些令人瞩目的性能规格伴随着高昂的价格标签。 #### 技术…...

测试微信模版消息推送
进入“开发接口管理”--“公众平台测试账号”,无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息: 关注测试号:扫二维码关注测试号。 发送模版消息: import requests da…...

Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件
今天呢,博主的学习进度也是步入了Java Mybatis 框架,目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学,希望能对大家有所帮助,也特别欢迎大家指点不足之处,小生很乐意接受正确的建议&…...
Linux云原生安全:零信任架构与机密计算
Linux云原生安全:零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言:云原生安全的范式革命 随着云原生技术的普及,安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测,到2025年,零信任架构将成为超…...

AI病理诊断七剑下天山,医疗未来触手可及
一、病理诊断困局:刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断",医生需通过显微镜观察组织切片,在细胞迷宫中捕捉癌变信号。某省病理质控报告显示,基层医院误诊率达12%-15%,专家会诊…...

基于 TAPD 进行项目管理
起因 自己写了个小工具,仓库用的Github。之前在用markdown进行需求管理,现在随着功能的增加,感觉有点难以管理了,所以用TAPD这个工具进行需求、Bug管理。 操作流程 注册 TAPD,需要提供一个企业名新建一个项目&#…...
作为测试我们应该关注redis哪些方面
1、功能测试 数据结构操作:验证字符串、列表、哈希、集合和有序的基本操作是否正确 持久化:测试aof和aof持久化机制,确保数据在开启后正确恢复。 事务:检查事务的原子性和回滚机制。 发布订阅:确保消息正确传递。 2、性…...

HubSpot推出与ChatGPT的深度集成引发兴奋与担忧
上周三,HubSpot宣布已构建与ChatGPT的深度集成,这一消息在HubSpot用户和营销技术观察者中引发了极大的兴奋,但同时也存在一些关于数据安全的担忧。 许多网络声音声称,这对SaaS应用程序和人工智能而言是一场范式转变。 但向任何技…...

Xela矩阵三轴触觉传感器的工作原理解析与应用场景
Xela矩阵三轴触觉传感器通过先进技术模拟人类触觉感知,帮助设备实现精确的力测量与位移监测。其核心功能基于磁性三维力测量与空间位移测量,能够捕捉多维触觉信息。该传感器的设计不仅提升了触觉感知的精度,还为机器人、医疗设备和制造业的智…...

C++_哈希表
本篇文章是对C学习的哈希表部分的学习分享 相信一定会对你有所帮助~ 那咱们废话不多说,直接开始吧! 一、基础概念 1. 哈希核心思想: 哈希函数的作用:通过此函数建立一个Key与存储位置之间的映射关系。理想目标:实现…...
Pydantic + Function Calling的结合
1、Pydantic Pydantic 是一个 Python 库,用于数据验证和设置管理,通过 Python 类型注解强制执行数据类型。它广泛用于 API 开发(如 FastAPI)、配置管理和数据解析,核心功能包括: 数据验证:通过…...