当前位置: 首页 > news >正文

CeresPCL 最小二乘插值(曲线拟合)

一、简介

在多项式插值时,当数据点个数较多时,插值会导致多项式曲线阶数过高,带来不稳定因素。因此我们可以通过固定幂基函数的最高次数 m(m < n),来对我们要拟合的曲线进行降阶。之前的函数形式就可以变为:

在这里插入图片描述
在这里插入图片描述

既然是最小二乘问题,那么就仍然可以使用Ceres来进行求解。

二、实现代码

#include <ceres/ceres.h>
#include <vector>

相关文章:

CeresPCL 最小二乘插值(曲线拟合)

一、简介 在多项式插值时,当数据点个数较多时,插值会导致多项式曲线阶数过高,带来不稳定因素。因此我们可以通过固定幂基函数的最高次数 m(m < n),来对我们要拟合的曲线进行降阶。之前的函数形式就可以变为: 既然是最小二乘问题,那么就仍然可以使用Ceres来进行求解。 …...

【TCP/IP】自定义应用层协议,常见端口号

互联网中&#xff0c;主流的是 TCP/IP 五层协议 5G/4G 上网&#xff0c;是有自己的协议栈&#xff0c;要比 TCP/IP 更复杂&#xff08;能够把 TCP/IP 的一部分内容给包含进去了&#xff09; 应用层 可以代表我们所编写的应用程序&#xff0c;只要应用程序里面用到了网络通信…...

Frida 的下载和安装

首先要安装好 python 环境 安装 frida 和 工具包 pip install frida frida-tools 查看版本&#xff1a; frida --version 16.4.8 然后到 github 上下载对应 server &#xff08; 和frida 的版本一致 16.4.8&#xff09; Releases frida/frida (github.com) 查看手机或…...

后端开发刷题 | 链表内指定区间反转【链表篇】

描述 将一个节点数为 size 链表 m 位置到 n 位置之间的区间反转&#xff0c;要求时间复杂度 O(n)O(n)&#xff0c;空间复杂度 O(1)O(1)。 例如&#xff1a; 给出的链表为 1→2→3→4→5→NULL1→2→3→4→5→NULL, m2,n4 返回 1→4→3→2→5→NULL 数据范围&#xff1a; 链表…...

【NVMe系列-提问页与文章总结页面】

NVMe系列-提问页与文章总结页面 问题汇总NVMe协议是什么&#xff1f;PRP 与 PRP List是做什么的&#xff1f; 已写文章汇总 问题汇总 NVMe协议是什么&#xff1f; PRP 与 PRP List是做什么的&#xff1f; 已写文章汇总...

用生成器函数生成表单各字段

生成器函数生成表单字段是非常合适的用法,避免你要用纯javascript做后台时频繁的制作表单&#xff0c;而不能重复利用 //这里是javascript部分&#xff0c;formfiled.js //生成器函数对字段的处理&#xff0c;让各字段name\className\label\value\placeholder赋值到input的属性…...

【xilinx】O-RAN 无线电接口 - Vivado 2020.1 及更新工具版本的发行说明

描述 记录包含 O-RAN 无线电接口 LogiCORE IP 的发行说明和已知问题&#xff0c;包括以下内容&#xff1a; 一般信息已知和已解决的问题 解决方案 一般信息 可以在以下三个位置找到支持的设备&#xff1a; O-RAN 无线电接口 IP 产品指南&#xff08;需要访问O-RAN 安全站点&…...

结营考试- 算法进阶营地 - DAY11

结营考试 - 算法进阶营地 - DAY11 测评链接&#xff1b; A - 打卡题 考点&#xff1a;枚举&#xff1b; 分析 枚举 a _①_ b _②_ c d&#xff0c;中两个运算符的 3 3 3 种可能性&#xff0c;尝试寻找一种符合要求的答案。 参考代码 #include <bits/stdc.h> usi…...

设计模式: 访问者模式

文章目录 一、介绍二、模式结构三、优缺点1、优点2、缺点 四、应用场景 一、介绍 Visitor 模式&#xff08;访问者模式&#xff09;是一种行为设计模式&#xff0c;它允许在不修改对象结构的前提下&#xff0c;增加作用于一组对象上新的操作。就增加新的操作而言&#xff0c;V…...

selenium底层原理详解

目录 1、selenium版本的演变 1.1、Selenium 1.x&#xff08;Selenium RC时代&#xff09; 1.2、Selenium 2.x&#xff08;WebDriver整合时代&#xff09; 1.3、Selenium 3.x 2、selenium原理说明 3、源码说明 3.1、启动webdriver服务建立连接 3.2、发送操作 1、seleni…...

【Solidity】继承

继承 Solidity 中使用 is 关键字实现继承&#xff1a; contract Father {function getNumber() public pure returns (uint) {return 10;}function getNumber2() public pure virtual returns (uint) {return 20;} }contract Son is Father {}现在 Son 就可以调用 Father 的 …...

docker 安装mino服务,启动报错: Fatal glibc error: CPU does not support x86-64-v2

背景 docker 安装mino服务&#xff0c;启动报错&#xff1a; Fatal glibc error: CPU does not support x86-64-v2 原因 Docker 镜像中的 glibc 版本要求 CPU 支持 x86-64-v2 指令集&#xff0c;而你的硬件不支持。 解决办法 降低minio对应的镜像版本 经过验证&#xff1a;qu…...

地图相册系统的设计与实现

摘 要 随着信息技术和网络技术的飞速发展&#xff0c;人类已进入全新信息化时代&#xff0c;传统管理技术已无法高效&#xff0c;便捷地管理信息。为了迎合时代需求&#xff0c;优化管理效率&#xff0c;各种各样的管理系统应运而生&#xff0c;各行各业相继进入信息管理时代&a…...

使用vh和rem实现元素响应式布局

示例代码 height: calc(100vh 30rem) vh&#xff08;Viewport Height&#xff09;&#xff1a;vh是一个相对单位&#xff0c;代表浏览器窗口高度的百分比&#xff0c;例如20vh就是浏览器窗口高度的20%。 rem&#xff08;root em&#xff09;&#xff1a;rem是通过html根元素…...

螺旋矩阵 II(LeetCode)

题目 给你一个正整数 n &#xff0c;生成一个包含 1 到 n2 所有元素&#xff0c;且元素按顺时针顺序螺旋排列的 n x n 正方形矩阵 matrix 。 解题 def generateMatrix(n):matrix [[0] * n for _ in range(n)]top, bottom 0, n - 1left, right 0, n - 1num 1while top <…...

如何快速掌握一款MCU

了解MCU特点 rom &#xff0c;ramgpiotimerpower 明确哪些资源是项目开发需要的 认真理解相关资料模块 开始编程 编写特别的验证程序&#xff08;项目不紧&#xff09;按照自己的理解编写&#xff08;老司机&#xff0c;时间紧张&#xff09; 掌握MCU基本功能 定时器 固…...

XSS-DOM

文章目录 源码SVG标签Dom-Clobbringtostring 源码 <script>const data decodeURIComponent(location.hash.substr(1));;const root document.createElement(div);root.innerHTML data;// 这里模拟了XSS过滤的过程&#xff0c;方法是移除所有属性&#xff0c;sanitize…...

uniapp去掉页面导航条

在pages.json文件中&#xff0c;globalStyle中添加 ”app-plus“:{"titleNView":false }...

MySQL数据库专栏(三)数据库服务维护操作

1、界面维护&#xff0c;打开服务窗口找到MySQL服务&#xff0c;右键单击可对服务进行启动、停止、重启等操作。 选择属性&#xff0c;还可以设置启动类型为自动、手动、禁用。 2、指令维护 卸载服务&#xff1a;sc delete [服务名称] 例如&#xff1a;sc delete MySQL 启动服…...

【QT】基于UDP/TCP/串口 的Ymodom通讯协议客户端

【QT】基于UDP/TCP/串口的Ymodom通讯协议客户端 前言Ymodom实现QT实现开源库的二次开发-1开源库的二次开发-2 串口方式实现TCP方式实现UDP方式实现补充&#xff1a;文件读取补充&#xff1a;QT 封装成EXE 前言 Qt 运行环境 Desktop_Qt_5_11_2_MSVC2015_64bit &#xff0c;基于…...

SpringBoot-17-MyBatis动态SQL标签之常用标签

文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现

目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

智慧医疗能源事业线深度画像分析(上)

引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别

一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...

SciencePlots——绘制论文中的图片

文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了&#xff1a;一行…...

k8s从入门到放弃之Ingress七层负载

k8s从入门到放弃之Ingress七层负载 在Kubernetes&#xff08;简称K8s&#xff09;中&#xff0c;Ingress是一个API对象&#xff0c;它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress&#xff0c;你可…...

【位运算】消失的两个数字(hard)

消失的两个数字&#xff08;hard&#xff09; 题⽬描述&#xff1a;解法&#xff08;位运算&#xff09;&#xff1a;Java 算法代码&#xff1a;更简便代码 题⽬链接&#xff1a;⾯试题 17.19. 消失的两个数字 题⽬描述&#xff1a; 给定⼀个数组&#xff0c;包含从 1 到 N 所有…...

电脑插入多块移动硬盘后经常出现卡顿和蓝屏

当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时&#xff0c;可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案&#xff1a; 1. 检查电源供电问题 问题原因&#xff1a;多块移动硬盘同时运行可能导致USB接口供电不足&#x…...

python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)

更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...

Python爬虫(一):爬虫伪装

一、网站防爬机制概述 在当今互联网环境中&#xff0c;具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类&#xff1a; 身份验证机制&#xff1a;直接将未经授权的爬虫阻挡在外反爬技术体系&#xff1a;通过各种技术手段增加爬虫获取数据的难度…...