Vision Transformer(ViT)一种将Transformer架构应用于计算机视觉领域的模型
Vision Transformer(ViT)是一种将Transformer架构应用于计算机视觉领域的模型,它通过自注意力机制处理图像数据,与传统的卷积神经网络(CNN)相比,ViT能够更好地捕捉全局依赖关系。以下是对ViT的详细介绍:
ViT的本质
ViT的核心是将图像视为一系列的“视觉单词”或“令牌”(tokens),而不是连续的像素数组。它将图像切分为多个固定大小的图像块(patches),每个图像块通过线性嵌入到固定大小的向量中,类似于自然语言处理中的单词嵌入。
ViT的工作原理
1. 图像分块处理:输入图像首先被分割成多个小块(patches),每个小块被视为序列中的一个元素。
2. 嵌入处理:这些小块通过线性变换和位置编码转换为模型可以处理的向量形式。
3. 自注意力机制:使用Transformer架构中的自注意力机制对嵌入向量进行处理,捕捉图像中的全局和局部信息。
4. 前馈神经网络:自注意力机制处理后的结果输入到前馈神经网络进行进一步处理。
5. 分类器:最终,前馈神经网络的输出输入到分类器中,得到预测结果。
ViT的核心组件
Patch Embeddings:将图像分割成固定大小的图像块,并将每个图像块展平为一维向量,然后通过线性变换转换为嵌入向量。
Position Embeddings:为每个图像块嵌入添加位置编码,保持空间信息。
Classification Token:为了完成分类任务,添加一个特殊的分类标记,用于整个图像的表示。
Transformer Encoder:由多个堆叠的层组成,每层包括多头自注意力机制和全连接的前馈神经网络。
ViT的优势与挑战
-优势:ViT能够捕捉图像中的全局信息,支持并行计算,具有很好的通用性。
-挑战:需要大量的计算资源和标注数据进行训练,且在小数据集上可能不如CNN表现好。
实际应用
ViT已经在图像分类、目标检测、图像分割等多个计算机视觉任务中展现出优异的性能。随着技术的发展,ViT有望在未来成为计算机视觉领域的重要力量。
ViT作为一种新型的神经网络架构,为计算机视觉领域带来了新的发展机遇。尽管存在一些挑战,但技术的不断进步和创新预示着ViT将在未来发挥更大的作用。
相关文章:

Vision Transformer(ViT)一种将Transformer架构应用于计算机视觉领域的模型
Vision Transformer(ViT)是一种将Transformer架构应用于计算机视觉领域的模型,它通过自注意力机制处理图像数据,与传统的卷积神经网络(CNN)相比,ViT能够更好地捕捉全局依赖关系。以下是对ViT的详…...

得到任务式 大模型应用开发学习方案
根据您提供的文档内容以及您制定的大模型应用开发学习方案,我们可以进一步细化任务式学习的计划方案。以下是具体的任务式学习方案: 任务设计 初级任务 大模型概述:阅读相关资料,总结大模型的概念、发展历程和应用领域。深度学…...

使用el-menu跳转时偶尔会出现路由已经变了,但是页面却显示空白的情况
刚开始我以为是我数据加载的问题,后来又看有人说是template里不能包多个div,但我去看我出错的组件,并没有出现两个div。 后来我就把每个都给改了,即使是elemen-ui的标签也全部改在一个div里,就发现没问题了。 我改的…...

C语言家教记录(七)
C语言家教记录(七) 导语字符串字面量变量读写字符串操作函数惯用法数组 结构联合枚举总结与复习 导语 本次授课的内容如下:字符串,结构体、联合体、枚举 辅助教材为 《C语言程序设计现代方法(第2版)》 字…...

【数据结构】——十大排序详解分析及对比
【数据结构】——十大排序详解分析及对比 文章目录 【数据结构】——十大排序详解分析及对比前言1. 排序的概念及其运用1.1 排序的概念1.2 排序的应用 2. 插入排序2.1 直接插入排序2.2 希尔排序 3. 选择排序3.1 选择排序3.2 堆排序 4 交换排序4.1 冒泡排序4.2 快速排序4.2.1 霍…...

散点图适用于什么数据 thinkcell散点图设置不同颜色
在数据可视化的众多工具和技巧中,散点图是一种极为有效的方式,能够揭示变量之间的关系,尤其是在探索数据集的相关性、分布趋势、集群现象时。而在众多助力于制作高质量散点图的工具中,think-cell插件以其高效的操作和丰富的功能&a…...

1. windows搭建Kafka教程
目录 1. 部署zookeeper 1.1 下载地址 1.3 修改zoo配置 1.4 启动zookeepe服务 02 部署kafka 2.1 下载组件包 2.2 解压安装包 2.3 修改配置 2.4 启动kafka服务端 1. 部署zookeeper 1.1 下载地址 下载地址: kafka/zookeeper 下载地址 (qq.com) 1.2 解压 (…...

XSS复现
目录 XSS简单介绍 一、反射型 1、漏洞逻辑: 为什么有些标签可以触发,有些标签不能触发 可以触发的标签 不能触发的标签 为什么某些标签能触发而某些不能 二、DOM型 1、Ma Spaghet! 要求: 分析: 结果: 2、J…...

怎么利用XML发送视频彩信
传统的短信推广主要以文字为主,用户接收到的信息往往显得单调乏味。而视频彩信则不同,它结合了视频和音频的优势,通过生动的画面和悦耳的音乐,给用户带来强烈的视听冲击,从而极大地提高了用户的吸引力。 XML成功返回示…...

5G+工业互联网产教融合创新实训室解决方案
一、建设背景 随着第五代移动通信技术(5G)的快速普及和工业互联网的迅猛发展,全球制造业正面临着前所未有的深刻变革。5G技术凭借其超高的传输速率、极低的延迟以及大规模的连接能力,为工业自动化、智能制造等领域带来了革命性的…...

象棋布局笔记
文章目录 布局中炮(当头炮)当头炮的缺点如何应对平车压马平炮对车的理解中炮对屏风马急进中兵 中炮盘头马盘头马两翼突破 盖马三锤 反宫马克制反宫马 顺手炮 士角炮56炮破解56炮 小当头 屏风马7卒分支3卒分支屏风马红车二进六败招(黑未挺7卒前直接进车)马八进九变车三退一变马二…...

百度AI智能云依赖库OpenSSL库和Curl库及jsoncpp库安装
开发百度AI项目时,需要用到https协议,因此需要安装OpenSSl和curl库。 若只安装curl库,只支持http协议,不支持https协议。此外,还需要jsoncpp库,用以组包及解析与百度AI通信的json格式协议。 1.Ubuntu上安装…...

智慧空调离线语音控制方案:NRK3301芯片的深度解析与应用
随着AI技术的大爆发和智能家居的风潮,语音交互已成为智能家居产品的一项必备技能,在家电、音箱、穿戴设备乃至墙壁开关等贴近生活的产品中应用越来越广泛,智能语音识别是当前最热门的方案之一。 九芯智能顺应家居行业智能语音交互市场需求&a…...

基础第3关:LangGPT结构化提示词编写实践
提示词: # Role: 伟大的数学家 ## Profile - author: LangGPT - version: 1.0 - language: 中文 - description: 一个伟大的数学家,能够解决任何的数学难题 ## Goals: 根据关键词进行描述,避免与已有描述重复。 ## Background: 你正在被…...

Nginx系列-负载均衡
文章目录 Nginx系列-负载均衡1. 负载均衡基础1.1 负载均衡定义1.2 Nginx负载均衡原理 2. 负载均衡策略2.1 轮询(Round Robin)2.2 加权轮询(Weighted Round Robin)2.3 IP哈希(IP Hash)2.4 最少连接ÿ…...

中职物联网实训室
一、中职物联网实训室建设背景 在当今科技日新月异的浪潮中,物联网技术以其迅猛的发展势头,成为了撬动数字化转型的关键杠杆,深刻地重塑着经济社会的面貌。面对这一变革,社会对精通物联网技术的应用型人才需求激增。鉴于此&#x…...

Image-coloring的部署,在Ubuntu22.04系统下——点动科技
一、ubuntu22.04基本环境配置 1.1 更换清华Ubuntu镜像源 删除原来的文件 rm /etc/apt/sources.list开始编辑新文件 vim /etc/apt/sources.list先按i键,粘贴以下内容 # 默认注释了源码镜像以提高 apt update 速度,如有需要可自行取消注释 deb https:…...

Springboot 整合 Swagger3(springdoc-openapi)
使用springdoc-openapi这个库来生成swagger的api文档 官方Github仓库: https://github.com/springdoc/springdoc-openapi 官网地址:https://springdoc.org 目录题 1. 引入依赖2. 拦截器设置3. 访问接口页面3.1 添加配置项,使得访问路径变短…...

netty4报错:io.netty.util.IllegalReferenceCountException: refCnt: 0, decrement: 1
背景:netty执行链中有一串自定义的handler,目前我想要在中间再加上一个pingPonghandler来进行控制帧的处理,从而避免ng的读写超时(客户要求,与他们建立的通道一直连接,不进行断连,从而需要考虑n…...

2022年汽车软件行业产业细分及发展趋势分析
2022年汽车软件行业产业细分及发展趋势分析 连接 2022年汽车软件行业产业细分及发展趋势分析...

如何通过变更让 PostgreSQL 翻车
在开发应用程序和维护其后台数据库集群的过程中,我们经常会遇到实践与理论、开发环境与生产环境之间的差异。其中一个典型的例子就是变更数据库中的列类型。 对于在 PostgreSQL(及其他符合 SQL 标准的系统)中变更列类型的常规操作࿰…...

MySQL表涉及规范
MySQL表设计规范是为了确保数据库表结构的合理性、可读性和可维护性。以下是一些建议和规范: 1.使用InnoDB存储引擎:InnoDB存储引擎提供了事务支持、行级锁定和外键约束,有助于提高数据的完整性和性能。 2.表名和字段名命名规范:…...

服务器Ubuntu22.04系统 使用dcocker部署安装ollama和搭配open_webui使用
服务器Ubuntu22.04系统 使用dcocker部署安装ollama和搭配open_webui使用 一、ubuntu和docker基本环境配置 1.更新包列表: 打开终端,输入以下命令: sudo apt-get updatesudo apt upgrade更新时间较长,请耐心等待 2. 安装docke…...

代理模式Proxy
一、代理模式(Proxy) 1.代理模式的定义 代理模式给某一个对象提供一个代理对象,并由代理对象控制对真实对象的访问,起到对代理对象已有功能的增强 通俗的来讲代理模式就是我们生活中常见的中介。 2.作用 中介隔离作用&#x…...

C++ 设计模式——抽象工厂模式
抽象工厂模式 抽象工厂模式 抽象工厂模式主要组成部分代码实现抽象工厂模式模式的 UML 图抽象工厂模式 UML 图解析优点和缺点适用场景 抽象工厂模式提供一个接口,用于创建一系列相关或相互依赖的对象,而无需指定它们的具体类。它通常用于需要创建多个产品…...

《亿级流量系统架构设计与实战》第十一章 Timeline Feed服务
Timeline Feed服务 一、概述1、分类2、功能 二、设计原理1、拉模式与用户发件箱2、推模式与用户收件箱3、推拉模式结合 三、关键技术1、内容与用户收件箱的交互(推模式)2、推送拆分子任务3、收件箱模型设计 内容总结自《亿级流量系统架构设计与实战》 一…...

氙灯老化试验箱试验机
氙灯老化试验箱,采用6.5KW大功率的精密水冷式氙灯,曝晒面积达到了6500cm2 功能强大,测试结果可靠 ◆ 满足国内外所有氙灯测试标准要求。 ◆ 采用氙灯灯管及滤光器组件,保证试验数据的可比性和重现性。 ◆ 自动旋转式三层鼓型样板架…...

【Qt】常用控件QRadioButton
常用控件QRadioButton QRadioButton是单选按钮,可以在多个选项中选择一个。 作为QAbstractButton和QWidget的子类,其属性和用法,对于QRadioButton同样适用。 属性说明 checkable 是否能选中 checked 是否已经被选中. checkable 是 checked…...

Mysql 离线版下载安装-(详细版)
Mysql 离线版下载安装-(详细版) 文章目录 Mysql 离线版下载安装-(详细版)1.0 下载地址2.0 解压到本地2.0.1 配置环境变量2.0.2 新建mysql配置文件ini2.0.3使用管理员启动 cmd 3.0 初始化密码忘记了4.0 修改初始化密码5.0 使用可视化工具登录Mysql 1.0 下载地址 地址࿱…...

Spring Boot和OCR构建车牌识别系统
博客主页: 南来_北往 系列专栏:Spring Boot实战 OCR介绍 OCR(Optical Character Recognition)是光学字符识别技术的缩写,它能够将图像中的文本转换为机器可读和编辑的数字文本格式。这种技术广泛应用于数据输入、文档管理…...