当前位置: 首页 > news >正文

【傅里叶分析】复数基础知识

【傅里叶分析】复数基础知识

  • 复数
  • 复数的几何意义
    • 与点的对应
    • 与向量的对应
  • 复数与极坐标
    • 辐角与辐角主值
    • 三角函数
  • 参考文献

本文参考了网上的其他文章,已在文末参考文献中列出;如有侵权,请联系我删除。

复变函数是傅里叶分析的基础,而复数是复变函数的基础。本文介绍了一些基础的关于复数的知识。

复数

对任意两个实数 x , y x, y x,y,有复数 z = x + i y z=x+iy z=x+iy,其中 i 2 = − 1 i^2=-1 i2=1 i i i称为虚部。

也可以将复数 z z z的实部表示为 R e ( z ) = x Re(z)=x Re(z)=x,虚部表示为 I m ( z ) = y Im(z)=y Im(z)=y

复数的几何意义

与点的对应

如果以复数的实部为横轴、虚部为纵轴建立坐标系,则这个坐标系称为复平面

这样复数 z = x + y i z=x+yi z=x+yi就和复平面上的点 P ( x , y ) P(x,y) P(x,y)一一对应

复平面的横坐标称为实轴,纵坐标表称为虚轴

与向量的对应

复数 z = x + y i z=x+yi z=x+yi还可以和平面向量 O Z → = ( x , y ) \overrightarrow{OZ}=(x,y) OZ =(x,y)一一对应(实数0与零向量对应)

因此复数的模和向量的模计算方式相同。复数 z = x + y i z=x+yi z=x+yi的模 ∣ z ∣ = x 2 + y 2 |z|=\sqrt{x^2+y^2} z=x2+y2

复数与极坐标

辐角与辐角主值

表示复数 z z z的位置,也可以借助极坐标 ( r , θ ) (r,\theta) (r,θ)。那么 r r r就是复数的模,而 θ \theta θ则为复数与实轴正方向的夹角,且满足:
tan ⁡ θ = y x \tan \theta=\frac{y}{x} tanθ=xy
θ \theta θ称为复数 z z z辐角,记为:
θ = A r g z \theta = {\rm Arg} \, z θ=Argz
正切函数是周期函数,任一非零复数都有无数个辐角,所以 A r g z {\rm Arg}\,z Argz实际上是一个集合。但是该集合中只有一个 θ \theta θ满足条件:
− π < θ < π {-} \pi < \theta < \pi π<θ<π
将这个 θ \theta θ记为 a r g z {\rm arg}\, z argz,即辐角主值或主辐角。
辐角的集合则可以表示为 A r g z = { a r g z + 2 k π ∣ k ∈ Z } {\rm Arg} \, z=\{{\rm arg}\, z+2k \pi \,|\, k \in \mathbf{Z}\} Argz={argz+2kZ}

三角函数

在极坐标中,复数 z = x + i y z=x+iy z=x+iy在实轴和虚轴上的值都可以用三角函数来表示:
{ x = r cos ⁡ θ y = r sin ⁡ θ \begin{cases} x=r\, \cos \theta \\ y=r\, \sin \theta \end{cases} {x=rcosθy=rsinθ
由此,复数本身也可以用三角函数来表示:
z = r ( cos ⁡ θ + i sin ⁡ θ ) z=r(\cos \theta + i \, \sin \theta) z=r(cosθ+isinθ)
极坐标中的复数

参考文献

  1. 复变函数:复数基本知识、欧拉公式、复变函数的导数、解析函数
  2. Oi Wiki网-数学-复数

相关文章:

【傅里叶分析】复数基础知识

【傅里叶分析】复数基础知识 复数复数的几何意义与点的对应与向量的对应 复数与极坐标辐角与辐角主值三角函数 参考文献 本文参考了网上的其他文章&#xff0c;已在文末参考文献中列出&#xff1b;如有侵权&#xff0c;请联系我删除。 复变函数是傅里叶分析的基础&#xff0c;而…...

从【人工智能】到【计算机视觉】,【深度学习】引领的未来科技创新与变革

前几天偶然发现了一个超棒的人工智能学习网站&#xff0c;内容通俗易懂&#xff0c;讲解风趣幽默&#xff0c;简直让人欲罢不能。忍不住分享给大家&#xff0c;点击这里立刻跳转&#xff0c;开启你的AI学习之旅吧&#xff01; 前言 – 人工智能教程https://www.captainbed.cn/l…...

基于YOLOv10深度学习的草莓成熟度检测与识别系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、人工智能

《博主简介》 小伙伴们好&#xff0c;我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。 ✌更多学习资源&#xff0c;可关注公-仲-hao:【阿旭算法与机器学习】&#xff0c;共同学习交流~ &#x1f44d;感谢小伙伴们点赞、关注&#xff01; 《------往期经典推…...

log4j日志配置%X{TransId}

log4j日志配置文件中的%X{TransId}是怎么动态获取值的 在Log4j中&#xff0c;%X{TransId} 是用来从MDC&#xff08;Mapped Diagnostic Context&#xff09;中获取值的占位符。MDC 是 Log4j 提供的一种机制&#xff0c;用于在同一个线程的不同日志记录中传递上下文信息。通过 M…...

PHP模拟高并发异步请求测试+redis的setnx处理并发和防止死锁处理

/** PHP并发异步请求测试* /test/curlMulti*/public function curlMultiAction(){$urls ["http://localhost:801/api/order/create","http://localhost:801/api/order/create","http://localhost:801/api/order/create","http://localhos…...

访问网站出现“此站点不安全”如何解决

在网络浏览中&#xff0c;我们经常会遇到浏览器地址栏出现“此站点不安全”的警告。这通常意味着网站没有使用SSL&#xff08;安全套接层&#xff09;加密来保护用户数据的安全。那么&#xff0c;如何通过获得并安装SSL证书来消除这一警告&#xff0c;确保网站的安全可靠呢&…...

同一台电脑同时连接使用Gitee(码云)和Github

1、添加对应的密钥 ssh-keygen -t rsa -C "your_emailexample.com" -f ~/.ssh/github_id-rsa //生成github秘钥 ssh-keygen -t rsa -C "your_emailexample.com" -f ~/.ssh/gitee_id-rsa //生成码云秘钥 2、在 ~/.ssh 文件里会生成对应的文件 文件夹里会…...

GORM 插入和批量插入操作介绍

GORM 是一个功能强大的 Go 语言 ORM 库&#xff0c;它提供了简单易用的 API 来执行数据库操作。本文将介绍如何使用 GORM 进行单条记录插入和批量插入操作。 单条记录插入 在 GORM 中&#xff0c;插入一条记录非常简单。首先&#xff0c;你需要定义一个模型&#xff0c;该模型…...

企业CAD图纸加密软件推荐!2024年好用的10款CAD图纸加密软件排行

在现代企业中&#xff0c;CAD图纸作为重要的设计和工程数据&#xff0c;其安全性和保密性至关重要。为了防止图纸被非法获取、篡改或滥用&#xff0c;选择一款高效的CAD图纸加密软件显得尤为重要。本文将为您推荐2024年市场上十款好用的CAD图纸加密软件&#xff0c;帮助企业保护…...

智能电梯标志新时代:墨水屏电子标签引领变革

电梯安全墨水屏标签的智能设备悄然出现在各大写字楼和住宅区的电梯中&#xff0c;引发了广泛关注。这款设备替代了传统的纸质电梯标志&#xff0c;通过手机蓝牙标签APP直接进行编辑刷新内容&#xff0c;并具备Type-C接口充电功能。 本文将深入探讨这一创新技术的应用前景及其对…...

使用nvm下载nodejs版本报错

这里写自定义目录标题 使用nvm下载nodejs版本报错&#xff1a;Error retrieving "http://npm.taobao.org/mirrors/node/latest/SHASUMS256.txt": HTTP Status 404问题原因解决办法 使用nvm下载nodejs版本报错&#xff1a;Error retrieving “http://npm.taobao.org/m…...

深入理解CSS的:valid和:invalid伪类:增强表单验证的艺术

在现代网页设计中&#xff0c;用户输入验证是一个重要的环节&#xff0c;它不仅关乎用户体验&#xff0c;也是数据准确性和安全性的保障。CSS3引入了两个强大的伪类选择器&#xff1a;:valid和:invalid&#xff0c;它们允许开发者通过CSS来增强表单输入的验证过程&#xff0c;而…...

稚晖君发布5款全能人形机器人,开源创新,全能应用

8月18日&#xff0c;智元机器人举行“智元远征 商用启航” 2024年度新品发布会&#xff0c;智元联合创始人彭志辉主持并发布了“远征”与“灵犀”两大系列共五款商用人形机器人新品——远征A2、远征A2-W、远征A2-Max、灵犀X1及灵犀X1-W&#xff0c;并展示了在机器人动力、感知、…...

【总结】冲击偶的概念与性质

冲击偶的概念与性质...

Hbase图形化界面

分享一个好用的hbase图形化界面 安装包&#xff1a;链接: https://pan.baidu.com/s/11Y2cDlme-P2xe--pYqy6MQ?pwdguag 提取码: guag 1、上传项目到linux 2、修改数据库配置信息 application-druid.yml 修改url、username、password为数据库连接信息 3、创建数据库(注意字符集…...

PhalApi:在宝塔一键安装部署PHP开源接口框架的教程

如何在宝塔上&#xff0c;一键安装部署PhalApi开源接口框架&#xff1f; 第一步&#xff0c;进入你的宝塔 - 软件商店。 第二步&#xff0c;切换到&#xff1a;一键部署&#xff1b; 第三步&#xff0c;搜索 phalapi&#xff1b; 第四步&#xff0c;点击 一键部署&#xff1…...

什么是BERT?工程快速入门

基本介绍 全称是Bidirectional Encoder Representations from Transformers。BERT翻译成中文通常被称为“双向编码器表征法”或简单地称为“双向变换器模型” Bidirectional&#xff1a;是双向神经网络&#xff0c;这个在学习 RNN 时候我们就了解到如何使用双向 RNN 让每一个…...

SQL - 事务

事务是代表单个工作单元的一组SQL语句&#xff0c;当我们需要对数据库进行多次更改的情况下&#xff0c;要使用事务&#xff0c;我们希望所有这些更改作为一个单元一起成功或失败事务属性 (ACID) 原子性(Atomicity)&#xff1a;事务中的所有操作要么全部完成&#xff0c;要么全…...

系统, 安装完以后只能进ubuntu

1.问题 在已经安装了Windows10系统的情况下&#xff0c;用U盘安装Ubuntu 16.04双系统&#xff0c; 安装完以后只能进ubuntu&#xff0c;在grub系统选择界面&#xff0c;Windows10操作系统的选项都没有。 2.解决办法 进入ubuntu系统&#xff0c;打开终端输入: sudo update-g…...

闲鱼功能全解析:闲置物品快速变现

咸鱼&#xff08;现已更名为闲鱼&#xff09;作为一款闲置交易平台&#xff0c;其功能设计旨在提供一个方便、安全的环境&#xff0c;让用户能够轻松地买卖二手物品。以下是对咸鱼&#xff08;闲鱼&#xff09;功能的详细分析 1. 商品发布与管理 商品发布&#xff1a;用户可以…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?

编辑&#xff1a;陈萍萍的公主一点人工一点智能 未来机器人的大脑&#xff1a;如何用神经网络模拟器实现更智能的决策&#xff1f;RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战&#xff0c;在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?

Golang 面试经典题&#xff1a;map 的 key 可以是什么类型&#xff1f;哪些不可以&#xff1f; 在 Golang 的面试中&#xff0c;map 类型的使用是一个常见的考点&#xff0c;其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

阿里云ACP云计算备考笔记 (5)——弹性伸缩

目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...

大数据零基础学习day1之环境准备和大数据初步理解

学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 &#xff08;1&#xff09;设置网关 打开VMware虚拟机&#xff0c;点击编辑…...

Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级

在互联网的快速发展中&#xff0c;高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司&#xff0c;近期做出了一个重大技术决策&#xff1a;弃用长期使用的 Nginx&#xff0c;转而采用其内部开发…...

嵌入式常见 CPU 架构

架构类型架构厂商芯片厂商典型芯片特点与应用场景PICRISC (8/16 位)MicrochipMicrochipPIC16F877A、PIC18F4550简化指令集&#xff0c;单周期执行&#xff1b;低功耗、CIP 独立外设&#xff1b;用于家电、小电机控制、安防面板等嵌入式场景8051CISC (8 位)Intel&#xff08;原始…...

MFE(微前端) Module Federation:Webpack.config.js文件中每个属性的含义解释

以Module Federation 插件详为例&#xff0c;Webpack.config.js它可能的配置和含义如下&#xff1a; 前言 Module Federation 的Webpack.config.js核心配置包括&#xff1a; name filename&#xff08;定义应用标识&#xff09; remotes&#xff08;引用远程模块&#xff0…...

SpringAI实战:ChatModel智能对话全解

一、引言&#xff1a;Spring AI 与 Chat Model 的核心价值 &#x1f680; 在 Java 生态中集成大模型能力&#xff0c;Spring AI 提供了高效的解决方案 &#x1f916;。其中 Chat Model 作为核心交互组件&#xff0c;通过标准化接口简化了与大语言模型&#xff08;LLM&#xff0…...

渗透实战PortSwigger靶场:lab13存储型DOM XSS详解

进来是需要留言的&#xff0c;先用做简单的 html 标签测试 发现面的</h1>不见了 数据包中找到了一个loadCommentsWithVulnerableEscapeHtml.js 他是把用户输入的<>进行 html 编码&#xff0c;输入的<>当成字符串处理回显到页面中&#xff0c;看来只是把用户输…...

Python网页自动化Selenium中文文档

1. 安装 1.1. 安装 Selenium Python bindings 提供了一个简单的API&#xff0c;让你使用Selenium WebDriver来编写功能/校验测试。 通过Selenium Python的API&#xff0c;你可以非常直观的使用Selenium WebDriver的所有功能。 Selenium Python bindings 使用非常简洁方便的A…...