当前位置: 首页 > news >正文

【数据结构】实现二叉树的基本操作

目录

1. 二叉树的基本操作

2. 具体实现

2.1 创建BinaryTree类以及简单创建一棵树

2.2 前序遍历

2.3 中序遍历

2.4 后序遍历

2.5 层序遍历

2.6 获取树中节点的个数

2.7 获取叶子节点的个数

2.8 获取第K层节点的个数

2.9 获取二叉树的高度

2.10 检测值为val的元素是否存在

2.11 判断一棵树是不是完全二叉树

3. 整体代码 + 测试代码

测试结果:


上一篇已经了解了一些二叉树的基本内容,这篇来讲二叉树的基本操作。

1. 二叉树的基本操作

    // 前序遍历void preOrder(TreeNode root);  // 中序遍历void inOrder(TreeNode root);// 后序遍历void postOrder(TreeNode root);// 获取树中节点的个数:遍历思路public static int nodeSize;void size(TreeNode root);// 获取节点的个数:子问题的思路int size2(TreeNode root);//获取叶子节点的个数:遍历思路public static int leafSize = 0;void getLeafNodeCount1(TreeNode root);// 获取叶子节点的个数:子问题int getLeafNodeCount2(TreeNode root);// 获取第K层节点的个数int getKLevelNodeCount(TreeNode root, int k);// 获取二叉树的高度,时间复杂度:O(N)int getHeight(TreeNode root);// 检测值为value的元素是否存在TreeNode find(TreeNode root, char val);//层序遍历void levelOrder(TreeNode root);// 判断一棵树是不是完全二叉树boolean isCompleteTree(TreeNode root);

2. 具体实现

2.1 创建BinaryTree类以及简单创建一棵树

public class MyBinTree {private class TreeNode {char val;TreeNode left;// 左孩子的引用,常常代表左孩子为根的整棵左子树TreeNode right;// 右孩子的引用,常常代表右孩子为根的整棵右子树public TreeNode(char val) {this.val = val;}}public TreeNode createTree() {TreeNode root = new TreeNode('A');TreeNode node1 = new TreeNode('B');TreeNode node2 = new TreeNode('C');TreeNode node3 = new TreeNode('D');TreeNode node4 = new TreeNode('E');TreeNode node5 = new TreeNode('F');TreeNode node6 = new TreeNode('G');TreeNode node7 = new TreeNode('H');TreeNode node8 = new TreeNode('I');root.left = node1;root.right = node2;node1.left = node3;node1.right = node5;node2.right = node6;node3.left = node4;node5.left = node7;node5.right = node8;return root;}
}

2.2 前序遍历

"根左右":从树根开始,先遍历根节点,继续递归的遍历左子树,最后再递归的遍历右子树。

public void preOrder(TreeNode root) {// 1.base caseif (root == null) {return;}// 根System.out.print(root.val + " ");// 左preOrder(root.left);//右preOrder(root.right);}

2.3 中序遍历

"左根右":先递归的访问左子树,然后访问根节点,最后递归的访问右子树。

// 中序遍历public void inOrder(TreeNode root) {if (root == null) {return;}// 先左子树的中序inOrder(root.left);// 根System.out.print(root.val + " ");// 再右子树的中序inOrder(root.right);}

2.4 后序遍历

"左右根":先递归的访问左子树,然后递归的访问右子树,最后访问根节点。

// 后序遍历public void postOrder(TreeNode root) {if (root == null) {return;}// 先左子树的后序postOrder(root.left);// 再右子树的后序postOrder(root.right);// 根System.out.print(root.val + " ");}

2.5 层序遍历

借助队列先进先出的特点来遍历节点:

void levelOrder(TreeNode root) {if (root == null){System.out.println("这是颗空树!!!");return;}// 借助队列来模拟层序遍历的过程Deque<TreeNode> queue = new LinkedList<>();queue.offer(root);// 队列为空,表示所有元素访问完毕while (!queue.isEmpty()){TreeNode cur = queue.pop();System.out.print(cur.val + " ");// 依次将当前节点的左右子树依次入队if (cur.left != null){queue.offer(cur.left);}if (cur.right != null){queue.offer(cur.right);}}}

2.6 获取树中节点的个数

将问题拆分成根节点与左右子树的问题,解决根节点的问题再递归调用本方法解决左右子树的问题。

第一种:需要一个全局变量来保存节点的个数,每走到一个节点先判断它是否为空,为空返回,否则加上这个节点即nodeSize+1,然后再递归的访问它的左右子树。

第二种:每走到一个节点先判断它是否为空,为空返回,否则返回1 + 左子树的节点个数 + 右子树的节点个数。

    public static int nodeSize;/*** 获取树中节点的个数:遍历思路*/void size(TreeNode root) {if (root == null){return;}nodeSize ++;size(root.left);size(root.right);}/*** 获取节点的个数:子问题的思路*/int size2(TreeNode root) {if (root == null) return 0;return size2(root.left) + size2(root.right) + 1;}

2.7 获取叶子节点的个数

与上一个的思路类似,也是拆分成根节点与左右子树的问题再递归调用本方法。

第一种:需要一个全局变量来保存叶子节点的个数,每走到一个节点先判断它是否为空,为空返回,再判断它是否为叶子节点(它的左右子树是否为空),是则leafSize+1,然后再递归的访问它的左右子树。

第二种:每走到一个节点先判断它是否为空,为空返回,再判断它是否为叶子节点(它的左右子树是否为空),是,返回1,否则返回左子树的叶子节点个数 + 右子树的叶子节点个数。

    /*获取叶子节点的个数:遍历思路*/public static int leafSize = 0;void getLeafNodeCount1(TreeNode root) {if(root == null){return;}if (root.left == null && root.right == null){leafSize ++;}getLeafNodeCount1(root.left);getLeafNodeCount1(root.right);}/*获取叶子节点的个数:子问题*/int getLeafNodeCount2(TreeNode root) {if (root == null) return 0;if (root.left == null && root.right == null) {return 1;}return getLeafNodeCount2(root.left) + getLeafNodeCount2(root.right);}

2.8 获取第K层节点的个数

(1)判断根节点是否为空或k是否合法,根节点为空或k不合法返回0

(2)再判断是否到了第k层(k == 1),是,返回1(第k层节点个数+1)

(3)否则(没到第k层)返回根节点的左右子树的叶子节点。

int getKLevelNodeCount(TreeNode root, int k) {if (root == null || k <= 0){return 0;}if (k == 1){return 1;}return getKLevelNodeCount(root.left,k - 1) + getKLevelNodeCount(root.right,k - 1);}

2.9 获取二叉树的高度

(1)判断根节点是否为空,根节点为空,直接返回0

(2)再判断根节点的左右子树是否为空(判断树是否只有一个节点),是,返回1

(3)返回 本层高度1 + 根节点的左右子树中高度较大的数(递归的交给getHeigth方法判断)

    /*获取二叉树的高度时间复杂度:O(N)*/int getHeight(TreeNode root) {if (root == null){return 0;}if(root.left == null && root.right == null){return 1;}return 1 + Math.max(getHeight(root.left),getHeight(root.right));}

2.10 检测值为val的元素是否存在

前序遍历的思路

第一种:

(1)判断根节点是否为空,根节点为空,直接返回null(不存在)

(2)判断根节点的值是否等于val,是,说明找到了该元素,返回根节点

(3)判断左子树中是否存在val,存在,返回该节点;不存在,再到右子树中寻找。

第二种:

与第一种思路一致,但是返回值使用布尔值,代码更简洁了。

// 检测值为value的元素是否存在1TreeNode find(TreeNode root, char val) {if (root == null){return null;}if (root.val == val){return root;}TreeNode node = find(root.left,val);if (node != null){return node;}return find(root.right,val);}
// 检测值为value的元素是否存在2public boolean contains(TreeNode root,char val){if (root == null) {return false;}if (root.val == val){return true;}return contains(root.left,val) || contains(root.right,val);}

2.11 判断一棵树是不是完全二叉树

按照层序遍历的方式遍历完全二叉树

step1:当前完全二叉树的每个节点都是度为2的节点,碰到第一个叶子节点或者只有左子树没有右子树的节点时转入step2;碰到第一个只有右子树没有左子树的节点直接返回false。

step2:当前完全二叉树全是叶子节点

boolean isCompleteTree(TreeNode root) {Deque<TreeNode> queue = new LinkedList<>();queue.offer(root);boolean isStep1 = true;while (!queue.isEmpty()){TreeNode node = queue.poll();if(isStep1){if(node.left != null && node.right != null){queue.offer(node.left);queue.offer(node.right);} else if (node.left != null) {queue.offer(node.left);isStep1 = false;} else if (node.right != null){return false;}else {isStep1 = false;}}else {if(node.left != null || node.right != null){return false;}}}return true;}

3. 整体代码 + 测试代码

import java.util.Deque;
import java.util.LinkedList;public class BinaryTree {static class TreeNode {public char val;public TreeNode left;//左孩子的引用public TreeNode right;//右孩子的引用public TreeNode(char val) {this.val = val;}}/*** 创建一棵二叉树 返回这棵树的根节点** @return*/public TreeNode createTree() {TreeNode root = new TreeNode('A');TreeNode node1 = new TreeNode('B');TreeNode node2 = new TreeNode('C');TreeNode node3 = new TreeNode('D');TreeNode node4 = new TreeNode('E');TreeNode node5 = new TreeNode('F');TreeNode node6 = new TreeNode('G');TreeNode node7 = new TreeNode('H');TreeNode node8 = new TreeNode('I');root.left = node1;root.right = node2;node1.left = node3;node1.right = node5;node2.right = node6;node3.left = node4;node5.left = node7;node5.right = node8;return root;}// 前序遍历public void preOrder(TreeNode root) {if(root == null){return;}System.out.print(root.val + " ");preOrder(root.left);preOrder(root.right);}// 中序遍历void inOrder(TreeNode root) {if(root == null){return;}inOrder(root.left);System.out.print(root.val + " ");inOrder(root.right);}// 后序遍历void postOrder(TreeNode root) {if(root == null){return;}postOrder(root.left);postOrder(root.right);System.out.print(root.val + " ");}public static int nodeSize;/*** 获取树中节点的个数:遍历思路*/void size(TreeNode root) {if (root == null){return;}nodeSize ++;size(root.left);size(root.right);}/*** 获取节点的个数:子问题的思路** @param root* @return*/int size2(TreeNode root) {if (root == null) return 0;return size2(root.left) + size2(root.right) + 1;}/*获取叶子节点的个数:遍历思路*/public static int leafSize = 0;void getLeafNodeCount1(TreeNode root) {if(root == null){return;}if (root.left == null && root.right == null){leafSize ++;}getLeafNodeCount1(root.left);getLeafNodeCount1(root.right);}/*获取叶子节点的个数:子问题*/int getLeafNodeCount2(TreeNode root) {if (root == null) return 0;if (root.left == null && root.right == null) {return 1;}return getLeafNodeCount2(root.left) + getLeafNodeCount2(root.right);}/*获取第K层节点的个数*/int getKLevelNodeCount(TreeNode root, int k) {if (root == null || k <= 0){return 0;}if (k == 1){return 1;}return getKLevelNodeCount(root.left,k - 1) + getKLevelNodeCount(root.right,k - 1);}/*获取二叉树的高度时间复杂度:O(N)*/int getHeight(TreeNode root) {if (root == null){return 0;}if(root.left == null && root.right == null){return 1;}return 1 + Math.max(getHeight(root.left),getHeight(root.right));}// 检测值为value的元素是否存在1TreeNode find(TreeNode root, char val) {if (root == null){return null;}if (root.val == val){return root;}TreeNode node = find(root.left,val);if (node != null){return node;}return find(root.right,val);}//    检测树中值为val的元素是否存在2public boolean contains(TreeNode root,char val){if (root == null) {return false;}if (root.val == val){return true;}return contains(root.left,val) || contains(root.right,val);}//层序遍历void levelOrder(TreeNode root) {if (root == null){System.out.println("这是颗空树!!!");return;}Deque<TreeNode> queue = new LinkedList<>();queue.offer(root);while (!queue.isEmpty()){TreeNode cur = queue.pop();System.out.print(cur.val + " ");if (cur.left != null){queue.offer(cur.left);}if (cur.right != null){queue.offer(cur.right);}}}// 判断一棵树是不是完全二叉树boolean isCompleteTree(TreeNode root) {Deque<TreeNode> queue = new LinkedList<>();queue.offer(root);boolean isStep1 = true;while (!queue.isEmpty()){TreeNode node = queue.poll();if(isStep1){if(node.left != null && node.right != null){queue.offer(node.left);queue.offer(node.right);} else if (node.left != null) {queue.offer(node.left);isStep1 = false;} else if (node.right != null){return false;}else {isStep1 = false;}}else {if(node.left != null || node.right != null){return false;}}}return true;}public static void main(String[] args) {BinaryTree tree = new BinaryTree();TreeNode root = tree.createTree();System.out.println("前序遍历");tree.preOrder(root);System.out.println();System.out.println("中序遍历");tree.inOrder(root);System.out.println();System.out.println("后序遍历");tree.postOrder(root);System.out.println();System.out.println("层序遍历");tree.levelOrder(root);System.out.println();System.out.println("统计树的节点个数");tree.size(root);System.out.println(nodeSize);System.out.println("统计叶子节点个数");tree.getLeafNodeCount1(root);System.out.println(leafSize);System.out.println("树的高度");System.out.println(tree.getHeight(root));System.out.println("检测树中值为val的元素是否存在");
//        System.out.println(tree.find(root,'x').val);if (tree.find(root,'Q') == null){System.out.println("没有找到该元素");}else {System.out.println(tree.find(root,'x').val);}if (tree.find(root,'B') == null){System.out.println("没有找到该元素");}else {System.out.println(tree.find(root,'B').val);}System.out.println("获取第K层节点的个数");System.out.println(tree.getKLevelNodeCount(root,3));System.out.println("判断一棵树是不是完全二叉树");System.out.println(tree.isCompleteTree(root));}}

测试结果:

 

相关文章:

【数据结构】实现二叉树的基本操作

目录 1. 二叉树的基本操作 2. 具体实现 2.1 创建BinaryTree类以及简单创建一棵树 2.2 前序遍历 2.3 中序遍历 2.4 后序遍历 2.5 层序遍历 2.6 获取树中节点的个数 2.7 获取叶子节点的个数 2.8 获取第K层节点的个数 2.9 获取二叉树的高度 2.10 检测值为val的元素是否…...

代码随想录算法训练营第五十二天| ● 300.最长递增子序列 ● 674. 最长连续递增序列 ● 718. 最长重复子数组

300.最长递增子序列 看完题后的思路 dp[i] [0,i]子数组中,以nums[i]结尾的子序列的长度 dp[i]dp[j]1 j从i-1向0遍历,在所有nums[j]<nums[i]中dp[j]最大 初始化 dp[0]1 代码 class Solution {public int lengthOfLIS(int[] nums) {if (nums.length0){return 0;}int[] dpne…...

手机验证发送及其验证(基于springboot+redis)保姆级

在Java开发中&#xff0c;发送手机验证码时需要考虑以下几个问题&#xff1a; 验证码的有效期&#xff1a;验证码应该有一定的有效期&#xff0c;一般设置为几分钟或者十几分钟。过期的验证码应该被认为是无效的&#xff0c;不能用于验证用户身份。手机号码格式的校验&#xf…...

【JavaScript 逆向】数美滑块逆向分析

声明本文章中所有内容仅供学习交流&#xff0c;相关链接做了脱敏处理&#xff0c;若有侵权&#xff0c;请联系我立即删除&#xff01;案例目标验证码&#xff1a;aHR0cHM6Ly93d3cuaXNodW1laS5jb20vbmV3L3Byb2R1Y3QvdHcvY29kZQ以上均做了脱敏处理&#xff0c;Base64 编码及解码方…...

多任务之线程

文章目录一、多任务是什么&#xff1f;二、多任务-线程四、通过继承Tread类完成创建线程五、资源竞争六、同步与互斥锁七、对峙与避免死锁一、多任务是什么&#xff1f; 多个函数同时执行一件事情就是多任务&#xff0c;没有多任务的时候任务执行都是按照顺序的&#xff0c;而…...

(数字图像处理MATLAB+Python)第二章数字图像处理基础-第二节:色度学基础与颜色模型

文章目录一&#xff1a;颜色匹配二&#xff1a;CIE 1931-RGB系统三&#xff1a;CIE 1931标准色度系统四&#xff1a;CIE 1976Lab均匀颜色空间五&#xff1a;孟塞尔表色系统&#xff08;1&#xff09;孟塞尔明度(Value&#xff0c;记为V)&#xff08;2&#xff09;孟塞尔彩度(Ch…...

【华为OD机试 2023最新 】 网上商城优惠活动(C++)

文章目录 题目描述输入描述输出描述备注用例题目解析C++题目描述 某网上商场举办优惠活动,发布了满减、打折、无门槛3种优惠券,分别为: 每满100元优惠10元,无使用数限制,如100199元可以使用1张减10元,200299可使用2张减20元,以此类推;92折券,1次限使用1张,如100元,…...

记一次CentOS 8 部署packstack部署OpenStack失败案例,请直接看最后

首先你需要一台安装好CentOS8 的虚拟机&#xff0c;相关参数如图。两块网卡&#xff0c;网卡1 NAT IP 192.168.100.100 GW192.168.100.2 网卡2 可不做配置。能ping通百度。创建完成虚拟机记得打好快照。 开机编辑基本配置环境变量 [rootlocalhost ~]# nmcli connection show NA…...

【2023春招】美团技术岗笔试10min+AK

随手投递了前端&移动端,笔试2道算法+选择+行测题(为什么笔试会有行测题?) 目录 T1-火车栈结构 题意 输入描述 输出描述 样例 AC_Code T2-春游...

Echarts实现图表自适应屏幕分辨率

一&#xff1a;简介 之前做项目的时候要实现echarts图表随浏览器窗口大小变化而改变&#xff0c;echarts本身提供了一个resize()方法&#xff0c;然后我们需要用一个函数实现浏览器窗口监听&#xff0c;最初我选用的是window.onresize方法&#xff0c;当页面只有一个图表时可以…...

【2023年第十一届泰迪杯数据挖掘挑战赛】B题:产品订单的数据分析与需求预测 建模及python代码详解 问题一

相关链接 【2023年第十一届泰迪杯数据挖掘挑战赛】B题&#xff1a;产品订单的数据分析与需求预测 建模及python代码详解 问题一 【2023年第十一届泰迪杯数据挖掘挑战赛】B题&#xff1a;产品订单的数据分析与需求预测 建模及python代码详解 问题二 1 题目 一&#xff0e;问题…...

【蓝桥杯嵌入式】第十三届蓝桥杯嵌入式国赛客观题以及详细题解

题1 概念题。 USRAT&#xff1a;异步串口通信&#xff0c;常用于数据传输&#xff1b;SW-DP&#xff1a;SWD 的全称应该是 The Serial Wire Debug Port (SW-DP),也就是串行调试端口&#xff0c;是 >ARM 目前支持的两种调试端口之一&#xff1b;JTAG-DP&#xff1a;另一个调试…...

java中Map遍历的4种方式

目录 1、map.entrySet()方式 2、map.keySet()方式 3、map.values()方式 4、forEach方式 本文以如下map案例&#xff1a; Map<String, String> map new HashMap<>(); map.put("student1", "张三"); map.put("student2", "…...

GCC 编译器的主要组件和编译过程

主要组件&#xff1a; 分析器&#xff1a;分析器将源语言程序代码转换为汇编语言。因为要从一种格式转换为另一种格式&#xff08;C到汇编&#xff09;&#xff0c;所以分析器需要知道目标机器的汇编语言。 汇编器&#xff1a;汇编器将汇编语言代码转换为CPU可以执行字节码。 …...

蓝桥杯冲刺 - week2

文章目录&#x1f4ac;前言&#x1f332;day1最大和 (DP质因数分解)901. 滑雪 - 记忆化搜索&#x1f332;day21227. 分巧克力 - 二分&#x1f332;day31221. 四平方和 - 空间换时间1230. K倍区间&#x1f332;day41076. 迷宫问题 - 路径2017-迷宫-填空&#x1f332;day5848. 有…...

第十四届蓝桥杯三月真题刷题训练——第 20 天

目录 第 1 题&#xff1a;纸张尺寸 问题描述 输入格式 输出格式 样例输入1 样例输出1 样例输入 2 样例输出 2 运行限制 代码&#xff1a; 解析&#xff1a; 第 2 题&#xff1a;最大数字 第 3 题&#xff1a;全排列的价值_递推公式 问题描述 输入格式 输出格式…...

【C++】科普:C++中的浮点数怎么在计算机中表示?

这里我们以8.25这个数为例说明计算机时如何存取float类型的数据的&#xff1a; float a 8.25;引言 1. 所占位数 首先&#xff0c;明确一个概念&#xff0c;float类型的数据在常规计算机中通常占4个字节&#xff0c;也就是32位。其内存分布如图&#xff1a; 位字段说明所占位…...

Linux 多线程:多线程和多进程的对比

目录一、多进程优缺点二、多线程优缺点三、使用多执行流的场景在多任务处理中&#xff0c;我们既可以使用多进程&#xff0c;也可以使用多线程。但多进程和多线程并不是随意选择的&#xff0c;因为它们应对的场景不同&#xff0c;优缺点也不同。 一、多进程优缺点 多进程就是在…...

IO流你了解多少

IO流你了解多少 &#x1f3e0;个人主页&#xff1a;shark-Gao &#x1f9d1;个人简介&#xff1a;大家好&#xff0c;我是shark-Gao&#xff0c;一个想要与大家共同进步的男人&#x1f609;&#x1f609; &#x1f389;目前状况&#xff1a;23届毕业生&#xff0c;目前在某公…...

【C++】C++ 11 新特性之auto关键字

文章目录类型别名的思考auto简介auto关键字的特性类型别名的思考 随着程序越来越复杂&#xff0c;程序中用到的类型也越来越复杂&#xff0c;经常体现在&#xff1a; 类型难于拼写含义不明确导致容易出错 #include <string> #include <map> int main() {std::ma…...

铭豹扩展坞 USB转网口 突然无法识别解决方法

当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...

Java 语言特性(面试系列2)

一、SQL 基础 1. 复杂查询 &#xff08;1&#xff09;连接查询&#xff08;JOIN&#xff09; 内连接&#xff08;INNER JOIN&#xff09;&#xff1a;返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...

树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频

使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...

Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)

文章目录 1.什么是Redis&#xff1f;2.为什么要使用redis作为mysql的缓存&#xff1f;3.什么是缓存雪崩、缓存穿透、缓存击穿&#xff1f;3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...

前端导出带有合并单元格的列表

// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代&#xff0c;情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现&#xff0c;消费者对内容的“有感”程度&#xff0c;正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

【算法训练营Day07】字符串part1

文章目录 反转字符串反转字符串II替换数字 反转字符串 题目链接&#xff1a;344. 反转字符串 双指针法&#xff0c;两个指针的元素直接调转即可 class Solution {public void reverseString(char[] s) {int head 0;int end s.length - 1;while(head < end) {char temp …...

uniapp微信小程序视频实时流+pc端预览方案

方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度​WebSocket图片帧​定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐​RTMP推流​TRTC/即构SDK推流❌ 付费方案 &#xff08;部分有免费额度&#x…...

实现弹窗随键盘上移居中

实现弹窗随键盘上移的核心思路 在Android中&#xff0c;可以通过监听键盘的显示和隐藏事件&#xff0c;动态调整弹窗的位置。关键点在于获取键盘高度&#xff0c;并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...

select、poll、epoll 与 Reactor 模式

在高并发网络编程领域&#xff0c;高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表&#xff0c;以及基于它们实现的 Reactor 模式&#xff0c;为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。​ 一、I…...