牛客网SQL进阶134: 满足条件的用户的试卷总完成次数和题目总练习次数
满足条件的用户的试卷完成数和题目练习数_牛客题霸_牛客网
0 问题描述
基于用户信息表user_info、试卷信息表examination_info、试卷作答记录表exam_record、题目练习记录表practice_record,筛选出 高难度SQL试卷得分平均值大于80并且是7级的用户,统计他们2021年试卷总完成次数和题目总练习次数,结果按试卷完成数升序,按题目练习数降序。
1 数据准备
drop table if exists examination_info,user_info,exam_record,practice_record;
CREATE TABLE examination_info (id int PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',exam_id int UNIQUE NOT NULL COMMENT '试卷ID',tag varchar(32) COMMENT '类别标签',difficulty varchar(8) COMMENT '难度',duration int NOT NULL COMMENT '时长',release_time datetime COMMENT '发布时间'
)CHARACTER SET utf8 COLLATE utf8_general_ci;CREATE TABLE user_info (id int PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',uid int UNIQUE NOT NULL COMMENT '用户ID',`nick_name` varchar(64) COMMENT '昵称',achievement int COMMENT '成就值',level int COMMENT '用户等级',job varchar(32) COMMENT '职业方向',register_time datetime COMMENT '注册时间'
)CHARACTER SET utf8 COLLATE utf8_general_ci;CREATE TABLE practice_record (id int PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',uid int NOT NULL COMMENT '用户ID',question_id int NOT NULL COMMENT '题目ID',submit_time datetime COMMENT '提交时间',score tinyint COMMENT '得分'
)CHARACTER SET utf8 COLLATE utf8_general_ci;CREATE TABLE exam_record (id int PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',uid int NOT NULL COMMENT '用户ID',exam_id int NOT NULL COMMENT '试卷ID',start_time datetime NOT NULL COMMENT '开始时间',submit_time datetime COMMENT '提交时间',score tinyint COMMENT '得分'
)CHARACTER SET utf8 COLLATE utf8_general_ci;INSERT INTO user_info(uid,`nick_name`,achievement,level,job,register_time) VALUES(1001, '牛客1号', 3100, 7, '算法', '2020-01-01 10:00:00'),(1002, '牛客2号', 2300, 7, '算法', '2020-01-01 10:00:00'),(1003, '牛客3号', 2500, 7, '算法', '2020-01-01 10:00:00'),(1004, '牛客4号', 1200, 5, '算法', '2020-01-01 10:00:00'),(1005, '牛客5号', 1600, 6, 'C++', '2020-01-01 10:00:00'),(1006, '牛客6号', 2000, 6, 'C++', '2020-01-01 10:00:00');INSERT INTO examination_info(exam_id,tag,difficulty,duration,release_time) VALUES(9001, 'SQL', 'hard', 60, '2021-09-01 06:00:00'),(9002, 'C++', 'hard', 60, '2021-09-01 06:00:00'),(9003, '算法', 'medium', 80, '2021-09-01 10:00:00');INSERT INTO practice_record(uid,question_id,submit_time,score) VALUES
(1001, 8001, '2021-08-02 11:41:01', 60),
(1002, 8001, '2021-09-02 19:30:01', 50),
(1002, 8001, '2021-09-02 19:20:01', 70),
(1002, 8002, '2021-09-02 19:38:01', 70),
(1004, 8001, '2021-08-02 19:38:01', 70),
(1004, 8002, '2021-08-02 19:48:01', 90),
(1001, 8002, '2021-08-02 19:38:01', 70),
(1004, 8002, '2021-08-02 19:48:01', 90),
(1004, 8002, '2021-08-02 19:58:01', 94),
(1004, 8003, '2021-08-02 19:38:01', 70),
(1004, 8003, '2021-08-02 19:48:01', 90),
(1004, 8003, '2021-08-01 19:38:01', 80);INSERT INTO exam_record(uid,exam_id,start_time,submit_time,score) VALUES
(1001, 9001, '2021-09-01 09:01:01', '2021-09-01 09:31:00', 81),
(1002, 9002, '2021-09-01 12:01:01', '2021-09-01 12:31:01', 81),
(1003, 9001, '2021-09-01 19:01:01', '2021-09-01 19:40:01', 86),
(1003, 9002, '2021-09-01 12:01:01', '2021-09-01 12:31:51', 89),
(1004, 9001, '2021-09-01 19:01:01', '2021-09-01 19:30:01', 85),
(1005, 9002, '2021-09-01 12:01:01', '2021-09-01 12:31:02', 85),
(1006, 9003, '2021-09-07 10:01:01', '2021-09-07 10:21:01', 84),
(1006, 9001, '2021-09-07 10:01:01', '2021-09-07 10:21:01', 80);
2 数据分析
select t1.uid,count(distinct case when year(t2.submit_time) = '2021' then t2.id else null end) as exam_cnt, count(distinct case when year(t3.submit_time) = '2021' then t3.id else null end) as question_cnt
from (select uidfrom exam_record where uid in (select uid from user_info where level = 7 ) and exam_id in (select exam_id from examination_info where tag = 'SQL' and difficulty = 'hard')group by uid having sum(score) / count(score) > 80 ) t1
left join exam_record t2 on t1.uid = t2.uid
left join practice_record t3 on t1.uid = t3.uid group by t1.uidorder by exam_cnt asc , question_cnt desc ;
-- 结果按试卷完成数升序,按题目练习数降序
思路分析:
- step1: 先筛选出 平均值大于80并且是7级用户的uid,得到t1
- step2:t1分别与t2、t3关联,要用left join,因为有些uid可能没做某个试卷或练习,也要保留记录
- step3:count(distinct )时,以id区分(case when ..then id ),不能以exam_id区分,因为存在一个uid可能对同一个试卷或练习做过多次。
3 小结
相关文章:
牛客网SQL进阶134: 满足条件的用户的试卷总完成次数和题目总练习次数
满足条件的用户的试卷完成数和题目练习数_牛客题霸_牛客网 0 问题描述 基于用户信息表user_info、试卷信息表examination_info、试卷作答记录表exam_record、题目练习记录表practice_record,筛选出 高难度SQL试卷得分平均值大于80并且是7级的用户,统计他…...
机器学习:逻辑回归处理手写数字的识别
1、获取数据, 图像分割该数据有50行100列,每个数字占据20*20个像素点,可以进行切分,划分出训练集和测试集。 import numpy as np import pandas as pd import cv2 imgcv2.imread("digits.png")#读取文件 graycv2.cvtColor(img,cv2.COLOR_BGR2G…...
文件上传真hard
一、SpringMVC实现文件上传 1.1.项目结构 1.1.2 控制器方法 RequestMapping("/upload1.do")public ModelAndView upload1(RequestParam("file1") MultipartFile f1) throws IOException {//获取文件名称String originalFilename f1.getOriginalFilename(…...
精益管理|介绍一本专门研究防错法(Poka-Yoke)的书
在现代制造业中,如何确保产品在每个生产环节中不出现错误是企业追求的目标之一。而实现这一目标的关键技术之一就是防错法(Poka-Yoke)。作为一种简单而有效的精益管理、六西格玛管理工具,防错法帮助企业避免因人为错误或工艺不当导…...
面试题目:(4)给表达式添加运算符
目录 题目 代码 思路解析 例子 题目 题目 给定一个仅包含数字 0-9 的字符串 num 和一个目标值整数 target ,在 num 的数字之间添加 二元 运算符(不是一元)、- 或 * ,返回 所有能够得到 target 的表达式。1 < num.length &…...
[C#]将opencvsharp的Mat对象转成onnxruntime的inputtensor的3种方法
第一种方法:在创建tensor时候直接赋值改变每个tensor的值,以下是伪代码: var image new Mat(image_path);inpWidth image.Width;inpHeight image.Height;//将图片转为RGB通道Mat image_rgb new Mat();Cv2.CvtColor(image, image_rgb, Col…...
CTF入门教程(非常详细)从零基础入门到竞赛,看这一篇就够了!
一、CTF简介 CTF(Capture The Flag)中文一般译作夺旗赛,在网络安全领域中指的是网络安全技术人员之间进行技术竞技的一种比赛形式。CTF起源于1996年DEFCON全球黑客大会,以代替之前黑客们通过互相发起真实攻击进行技术比拼的方式。…...
数据链路层 I(组帧、差错控制)【★★★★★】
(★★)代表非常重要的知识点,(★)代表重要的知识点。 为了把主要精力放在点对点信道的数据链路层协议上,可以采用下图(a)所示的三层模型。在这种三层模型中,不管在哪一段…...
悟空降世 撼动全球
文|琥珀食酒社 作者 | 积溪 一只猴子能值多少钱? 答案是:13个小目标 这两天 只要你家没有断网 一定会被这只猴子刷屏 它就是咱国产的3A游戏 《黑神话:悟空》 这只猴子到底有多火? 这么跟你说吧 茅台见了它都…...
Swoole 和 Java 哪个更有优势呢
Swoole 和 Java 各有优势,在性能上不能简单地说哪一个更好,需要根据具体的应用场景来分析。 Swoole 优势:高并发:Swoole 是一个基于 PHP 的异步、协程框架,专为高并发场景设计,适用于 I/O 密集型应用&…...
Salesforce 发布开源大模型 xGen-MM
xGen-MM 论文 在当今 AI 技术飞速发展的时代,一个新的多模态 AI 模型悄然崛起,引起了业界的广泛关注。这个由 Salesforce 推出的开源模型—— xGen-MM,正以其惊人的全能特性和独特优势,在 AI 领域掀起一阵旋风。那么,x…...
冒 泡 排 序
今天咱们单独拎出一小节来聊一聊冒泡排序昂 冒泡排序的核心思想就是:两两相邻的元素进行比较(理解思路诸君可看下图) 接下来我们上代码演示: 以上就是我们初步完成的冒泡排序,大家不难发现,不管数组中的元…...
采用先进的人工智能视觉分析技术,能够精确识别和分析,提供科学、精准的数据支持的智慧物流开源了。
智慧物流视频监控平台是一款功能强大且简单易用的实时算法视频监控系统。它的愿景是最底层打通各大芯片厂商相互间的壁垒,省去繁琐重复的适配流程,实现芯片、算法、应用的全流程组合,从而大大减少企业级应用约95%的开发成本可通过边缘计算技术…...
IAA游戏APP如何让合理地让用户观看更多广告,提高广告渗透率
广告变现已经成为休闲游戏开发者重要的收益方式之一,超50%国内休闲游戏已经采用广告变现的方式,游戏广告预算是游戏行业开发者广告变现的主要预算来源。 #深度好文计划#如何合理地提高广告渗透率? 广告渗透率能直接反映游戏中有广告行为用户…...
环网交换机的特殊作用是什么?
环网交换机作为现代网络建设的重要组成部分,具有独特而特殊的作用。在信息技术迅猛发展的今天,各类数据传输和网络连接需求日益增加,环网交换机的出现为解决这些问题提供了理想的方案。环网交换机通常将多个网络节点通过环形结构连接起来&…...
mac电脑安装Zsh并启用
安装 Zsh 1. 安装 Zsh 新版mac系统会默认安装并使用zsh,如没用,需在终端中安装: brew install zsh2. 安装 Oh My Zsh 克隆Oh My Zsh到你的目录: git clone https://github.com/robbyrussell/oh-my-zsh.git ~/.oh-my-zsh3. 复…...
【后续更新】python搜集上海二手房数据
源码如下: import asyncio import aiohttp from lxml import etree import logging import datetime import openpyxlwb = openpyxl.Workbook() sheet = wb.active sheet.append([房源, 房子信息, 所在区域, 单价, 关注人数和发布时间, 标签]) logging.basicConfig(level=log…...
创建GPTs,打造你的专属AI聊天机器人
在2023年11月的「OpenAI Devday」大会上,OpenAI再度带来了一系列令人瞩目的新功能,其中ChatGPT方面的突破尤为引人关注。而GPTs的亮相,不仅标志着个性化AI时代的到来,更为开发者和普通用户提供了前所未有的便利。接下来࿰…...
深度学习 vector 之模拟实现 vector (C++)
1. 基础框架 这里我们有三个私有变量,使用 _finish - _start 代表 _size,_end_of_storage - _start 代表 _capacity,并且使用到了模版,可以灵活定义存储不同类型的 vector,这里将代码量较小的函数直接定义在类的内部使…...
关于LLC知识10
在LLC谐振腔中能够变化的量 1、输入电压 2、Rac(负载) 所以增益曲线为红色(Rac无穷大)已经是工作的最大极限了,LLC不可能工作在红色曲线之外 负载越重时,增益曲线越往里面 假设: 输入电压…...
UE5 学习系列(二)用户操作界面及介绍
这篇博客是 UE5 学习系列博客的第二篇,在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下: 【Note】:如果你已经完成安装等操作,可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作,重…...
大型活动交通拥堵治理的视觉算法应用
大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动(如演唱会、马拉松赛事、高考中考等)期间,城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例,暖城商圈曾因观众集中离场导致周边…...
STM32+rt-thread判断是否联网
一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...
AtCoder 第409场初级竞赛 A~E题解
A Conflict 【题目链接】 原题链接:A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串,只有在同时为 o 时输出 Yes 并结束程序,否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...
【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力
引言: 在人工智能快速发展的浪潮中,快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型(LLM)。该模型代表着该领域的重大突破,通过独特方式融合思考与非思考…...
linux 错误码总结
1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...
Python爬虫(二):爬虫完整流程
爬虫完整流程详解(7大核心步骤实战技巧) 一、爬虫完整工作流程 以下是爬虫开发的完整流程,我将结合具体技术点和实战经验展开说明: 1. 目标分析与前期准备 网站技术分析: 使用浏览器开发者工具(F12&…...
MySQL 8.0 OCP 英文题库解析(十三)
Oracle 为庆祝 MySQL 30 周年,截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始,将英文题库免费公布出来,并进行解析,帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...
【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统
目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索(基于物理空间 广播范围)2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...
基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解
JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用,结合SQLite数据库实现联系人管理功能,并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能,同时可以最小化到系统…...
