线性代数:每日一题1/特征值与相似对角化
设A, B 为二阶矩阵,且 AB = BA , 则“A有两个不相等的特征值”是“B可对角化"的()
A. 充分必要条件
B. 充分不必要条件
C.必要不充分条件
D.既不充分也不必要条件
知识点:
-
特征向量与特征值的关系
-
相似矩阵的定义和性质
-
n阶矩阵可相似对角化的充要条件
定义一:设A是n阶矩阵,如果存在一个是 及非零的n维列向量
, 使得:
成立,则称 是矩阵A的一个特征值,称非零向量
是矩阵A属于特征值
的一个特征向量。
定义二:设 A 和 B 都是 n 阶矩阵,如果存在可逆矩阵 P ,使得:
则称矩阵 A 和 B 相似,记作 A~B .
特别地,如果A能够与对角矩阵相似,则称A可对角化。
定理1:n 阶方阵 A 可相似对角化的充要条件是 A 有 n 个线性无关的特征向量。
定理2:如果 是矩阵 A 的互不相同的特征值,
线性无关。
由题目可知,A,B矩阵相似。A的特征值与与B的特征值相同。由定理1,2可知,A矩阵可相似对角化。由于A,B矩阵相似,故B可相似对角化。充分性成立。
下面看必要性:B可对角化,能推出有2个线性无关的特征向量。但是注意,线性无关的特征向量不能推出特征值互不相同,如:[1,0],[0,1]。所以不能推出A有两个不相等的特征值。
综上,A有两个不同的特征值是B可对角化的充分不必要条件。
相关文章:
线性代数:每日一题1/特征值与相似对角化
设A, B 为二阶矩阵,且 AB BA , 则“A有两个不相等的特征值”是“B可对角化"的() A. 充分必要条件 B. 充分不必要条件 C.必要不充分条件 D.既不充分也不必要条件 知识点: 特征向量与特征值的关系 相似矩阵的定义和性质 n阶…...
Android UI:PopupWindow:API
文章目录 类操作 对PopupWindow的操作 创建PopupWindow对象的操作添加并显示PopupWindow的操作移除PopupWindow的操作更新PopupWindow的操作显示内容的相关操作 布局的相关操作进入退出动画的相关操作 Transition设置进入动画的相关操作Transition设置退出动画的相关操作XML设置…...

什么是DevUI?
DevUI是面向企业中后台产品的开源前端解决方案,其设计价值观基于"高效、开放、可信、乐趣"四种自然与人文相结合的理念,旨在为设计师、前端开发者提供标准的设计体系,并满足各类落地场景,是一款企业级开箱即用的产品。 …...

DAY53
作业: 运行1个服务器和2个客户端 实现效果: 服务器和2个客户端互相聊天,服务器和客户端都需要使用select模型去实现 服务器要监视2个客户端是否连接,2个客户端是否发来消息以及服务器自己的标准输入流 客户端要监视服务器是否发来…...

python中len是什么
Python len() 方法返回字符串长度。 len()方法语法: len( str ) 返回值: 返回字符串长度。 以下实例展示了len()的使用方法: #!/usr/bin/python str "this is string example....wow!!!"; print "字符串长度: ", len…...

推荐一个开源的kafka可视化客户端GUI工具(Kafka King)
大佬的博客地址: https://blog.ysboke.cn/posts/tools/kafka-king Github地址: https://github.com/Bronya0/Kafka-King Kafka-King功能清单 查看集群节点列表(完成)支持PLAINTEXT、SASL PLAINTEXT用户名密码认证(完…...
day 10 贪心算法
455. 分发饼干 饼干从大的开始利用,优先满足胃口大的; class Solution { public:int findContentChildren(vector<int>& g, vector<int>& s) {sort(g.begin(),g.end());sort(s.begin(),s.end());int res0;int indexs.size()-1;for…...

网络安全审计技术原理与应用
网络安全审计概述 概念 定义:对网络信息系统的安全相关活动信息进行获取、记录、存储、分析和利用的工作 作用:建立“事后”安全保障措施,保存网络安全事件及行为信息,为网络安全事件分析提供线索及证据,以便发现潜在网络安全威胁行为,开展网络安全风险分析及管理 常…...

计算机网络之TCP序号,确认序号和报文传输时间
开篇提示 本篇适合于了解基础知识,进行扩展提高的使用,附带考研习题以及解析。 TCP序号和确认序号的区别 TCP首部中有序号和确认序号,他们都是4个字节(4B),且在数据传输中有很重要的意义,那么两…...
HTML优化方法
HTML编码规范 代码格式化与缩进 1.缩进规则 推荐使用空格缩进而不是Tab,因为不同环境下空格的效果更加一致。常见缩进量为2个或4个空格 2.标签对齐 在嵌套的HTML结构中,子标签应当缩进,以清晰地展示层级关系。 3.属性的排列 …...

Codeforces Round 961 D. Cases 【SOS DP、思维】
D. Cases 题意 有一个长度为 n n n 且仅由前 c c c 个大写字母组成的字符串,问最少选取多少种字母为每个单词的结尾,使得每个单词长度不超过 k k k 思路 首先注意到最后一个字母一定要选择,接下来我们给出一个断言:如果一个…...

VirtualBox上的Oracle Linux虚拟机安装Docker全流程
1.安装docker依赖 yum install -y yum-utils device-mapper-persistent-data lvm2 2.安装docker仓库 yum-config-manager --add-repo https://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo 生成docker的yum源配置到在 /etc/yum.repos.d/docker-ce.repo 3.安装D…...

LNMP安装部署
目录 一、Nginx安装部署 1.安装包下载 2.下载相关依赖工具 3. 创建运行用户 4.编译安装 5.优化路径 6.将nginx添加至系统服务 7.文件赋权 二、MySQL部署安装 1.解压 2.安装相关工具 3.创建运行用户 4.编译安装 5.修改配置文件 6.更改mysql安装目录和配置文件的属…...
django之自定义序列化器用法
在Django中,自定义序列化器方法通常用于处理复杂的数据转换逻辑,特别是在使用Django REST framework(DRF)时。自定义序列化器方法可以帮助你在序列化和反序列化过程中执行特定的逻辑,比如格式化日期、计算字段值、或者…...

20240821给飞凌OK3588-C的核心板刷Rockchip原厂的Buildroot并挂载1TB的exFAT格式的TF卡
fdisk -l df -h df -t df -T mount 20240821给飞凌OK3588-C的核心板刷Rockchip原厂的Buildroot并挂载1TB的exFAT格式的TF卡 2024/8/21 18:06 【切记,对于Rockchip原厂的Buildroot,如果你没有针对性的适配DTS:修改其中的GPIO口供电,…...

多模态学习Multimodal Learning:人工智能中的多模态原理与技术介绍初步了解
多模态学习(Multimodal Learning)是机器学习中的一个前沿领域,旨在综合处理和理解来自不同模态的数据。模态可以包括文本、图像、音频、视频等。随着数据多样性和复杂性增加,多模态学习在自然语言处理、计算机视觉、语音识别等领域…...

外部环境连接kafka
修改配置文件外部环境连接kafka 1、kafka的docker官方镜像地址2、kafka官方介绍的三种连接方式3、方式一:Default configs默认配置4、方式二:File input(文件输入:外部配置文件替换docker容器内的配置文件)4.1、首先查…...
结合了MySQL数据库、Elasticsearch和Redis,构建一个产品搜索和推荐系统
1. 数据库设置(MySQL) 首先,我们需要创建两个表来存储产品信息和产品类别信息。 CREATE DATABASE product_system;USE product_system;CREATE TABLE categories (id INT AUTO_INCREMENT PRIMARY KEY,name VARCHAR(255) NOT NULL,created_at…...

白酒与素食:健康与美味的双重享受
在美食的世界里,白酒与素食的搭配仿佛是一场跨界的盛宴。豪迈白酒(HOMANLISM)的醇香与精致素食的清新,在不经意间交织出了一幅美妙的画卷,让人在品味中感受到健康与美味的双重享受。 素食,以其清淡、自然的…...

工厂现场多功能帮手,三防平板改善管理体验
随着制造业的智能化变革,信息化、自动化和智能化逐渐成为工厂管理的新常态。在这一波技术浪潮中,三防平板作为一种多功能的工作工具,正在逐步改善工厂现场的管理体验。 一、三防平板的定义与特点 三防平板,顾名思义,是…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
day52 ResNet18 CBAM
在深度学习的旅程中,我们不断探索如何提升模型的性能。今天,我将分享我在 ResNet18 模型中插入 CBAM(Convolutional Block Attention Module)模块,并采用分阶段微调策略的实践过程。通过这个过程,我不仅提升…...
Leetcode 3577. Count the Number of Computer Unlocking Permutations
Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接:3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯,要想要能够将所有的电脑解锁&#x…...
Spring Boot面试题精选汇总
🤟致敬读者 🟩感谢阅读🟦笑口常开🟪生日快乐⬛早点睡觉 📘博主相关 🟧博主信息🟨博客首页🟫专栏推荐🟥活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...

从零实现STL哈希容器:unordered_map/unordered_set封装详解
本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说,直接开始吧! 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台
🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...
大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计
随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...
MySQL 8.0 事务全面讲解
以下是一个结合两次回答的 MySQL 8.0 事务全面讲解,涵盖了事务的核心概念、操作示例、失败回滚、隔离级别、事务性 DDL 和 XA 事务等内容,并修正了查看隔离级别的命令。 MySQL 8.0 事务全面讲解 一、事务的核心概念(ACID) 事务是…...
MySQL 部分重点知识篇
一、数据库对象 1. 主键 定义 :主键是用于唯一标识表中每一行记录的字段或字段组合。它具有唯一性和非空性特点。 作用 :确保数据的完整性,便于数据的查询和管理。 示例 :在学生信息表中,学号可以作为主键ÿ…...

Neko虚拟浏览器远程协作方案:Docker+内网穿透技术部署实践
前言:本文将向开发者介绍一款创新性协作工具——Neko虚拟浏览器。在数字化协作场景中,跨地域的团队常需面对实时共享屏幕、协同编辑文档等需求。通过本指南,你将掌握在Ubuntu系统中使用容器化技术部署该工具的具体方案,并结合内网…...