当前位置: 首页 > news >正文

基于Spark实现大数据量的Node2Vec

基于Spark实现大数据量的Node2Vec

Node2Vec 是一种基于图的学习算法,用于生成图中节点的低维度、高质量的向量表示。这种算法基于 word2vec 模型,将自然语言处理中的词嵌入技术应用于图结构的节点,以捕捉节点之间的复杂关系。Node2Vec 特别强调同时保留图中的局部(微观)和全局(宏观)结构信息。Node2Vec生成的节点嵌入可以有效的表示节点的网络邻域结构,其中相似或功能相关的节点在向量空间中彼此靠近,并且也可以当做特征输入到下游的机器学习任务。
之前有写过一篇Python实现Node2Vec的文章,里面详细写了算法原理以及实现代码,单纯的Python不太适合大数据量的计算,当然有钱上GPU的除外图片,对于一般的而言,有分布式集群多CPU去换取计算速度的提升还是很划算的,用SparkGraphX实现Node2Vec也是这种思路。

文章目录

  • 基于Spark实现大数据量的Node2Vec
  • 一、Node2Vec算法实现流程
  • 二、Node2Vec模型参数
  • 三、Node2Vec数据结构(基于Scala)
  • 四、Node2Vec完整实现代码(基于Scala)
  • 总结


一、Node2Vec算法实现流程

  • 初始化:初始化一个网络图作为输入,支持无向图或有向图
  • 随机游走:Node2Vec的核心,基于随机游走策略,该策略由两个主要参数控制,返回参数p和进出参数q。
    • 返回参数 p:控制随机游走返回上一个节点的概率。如果p较高,则随机游走倾向于探索离起始节点近的区域。
    • 进出参数 q:控制游走是向外探索新节点的概率。如果q较高,则游走倾向于离开当前区域,探索更远的节点。
  • 生成随机游走序列:通过调整 p 和 q 的值,Node2Vec 生成多个随机游走序列。每个序列从图中的一个节点开始,根据设定的策略随机选择下一个节点,直到达到设定的长度。
  • Skip-Gram:将随机游走生成的节点序列视为句子,节点视为单词,使用 Word2Vec 中的 Skip-Gram 模型来学习节点的向量表示。在这一步中,模型的目标是最大化观察到的节点序列中节点的上下文相似性。
  • 训练模型得到节点嵌入:训练模型,最终每个节点都会有一个向量表示,这个向量捕获了节点的网络拓扑信息。这些向量可以用于各种下游任务,如节点分类、链接预测或聚类。

二、Node2Vec模型参数

Node2Vec模型参数

三、Node2Vec数据结构(基于Scala)

Node2Vec数据结构(基于Scala)

四、Node2Vec完整实现代码(基于Scala)

Node2Vec完整实现代码(基于Scala)


总结

在这里插入图片描述

相关文章:

基于Spark实现大数据量的Node2Vec

基于Spark实现大数据量的Node2Vec Node2Vec 是一种基于图的学习算法,用于生成图中节点的低维度、高质量的向量表示。这种算法基于 word2vec 模型,将自然语言处理中的词嵌入技术应用于图结构的节点,以捕捉节点之间的复杂关系。Node2Vec 特别强…...

[VMware]VMware-Esxi 6.7 厚置备转为精简置备

背景:创建了一个win10 60G的厚置备磁盘,现在想改为精简置备。 先关闭win10系统,并删除快照 1、开启shell 2、登录到虚拟存放的目录 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 [rootxxx:~] cd /vmfs/volumes/5fea055e-458157d3-c8f8-8cec4ba51c4…...

vue面试题十八

一、Vue 3中的样式绑定有哪些新特性? Vue 3中的样式绑定保持了与Vue 2相似的灵活性和强大功能,同时引入了一些新的特性和改进,主要集中在响应式系统和Composition API上。以下是Vue 3中样式绑定的主要新特性及其说明: 1. 响应式…...

windows C++-windows C++/CX简介(三)

^类型 (^) 是 C/CX 最突出的功能之一——当人们第一次看到 C/CX 代码时,很难不注意到它。那么,^ 类型到底是什么?这是类型是一种智能指针类型,它自动管理 Windows 运行时对象的生命周期,也 提供自动类型转换功能以简化…...

《黑神话.悟空》:一场跨越神话与现实的深度探索

《黑神话.悟空》:一场跨越神话与现实的深度探索 在国产游戏日益崛起的今天,《黑神话.悟空》以其独特的剧情、丰富的人物设定和深刻的主题,成为了无数玩家翘首以盼的国产3A大作。这款游戏不仅是一次对传统故事的创新演绎,更是一场对…...

【Kotlin设计模式】建造者模式在Android中的应用

前言 建造者模式(Builder Pattern)是一种创建型设计模式,一步一步地构建一个复杂对象的不同部分,而不是直接创建该对象的实例。建造者模式的核心思想是将对象的构建过程与其表示分离,使得同样的构建过程可以创建不同的…...

Kafka 性能为什么比 RocketMQ 好

Kafka 性能更好的原因 因为 kafka 零拷贝技术跟 RocketMQ 的不一样。 kafka 零拷贝技术使用的是 sendfileDMA scatter/gather 。只需要经过 2 次拷贝,2 次上下文切换RocketMQ 零拷贝使用的 mmap 内存映射,需要经过 3 次拷贝,4 次上下文切换…...

el-image的配套使用(表格,表单)

1. 配合table在一起使用&#xff0c;支持预览 此处使用场景是表格中只显示一张图片 preview-src-list只支持数组&#xff0c;故需要将单个字符串转换为转换为字符串数组 <el-table-column align"center" label"二维码"><template slot-scope&q…...

MKS MWH-5匹配器Automatc matching impedance Network手侧

MKS MWH-5匹配器Automatc matching impedance Network手侧...

打卡50天------图论

正式开启图论了&#xff0c;作为一个前端工程师&#xff0c;这个代码随想录真的刷新了我对于算法的认知&#xff0c;每天都在学习新东西。 别着急、放轻松、慢慢来。 一、图论理论基础 二、深搜理论基础 了解一下深搜的原理和过程&#xff0c;其实对于深搜和广搜我自己也写过…...

实现 FastCGI

CGI的由来&#xff1a; 最早的 Web 服务器只能简单地响应浏览器发来的 HTTP 请求&#xff0c;并将存储在服务器上的 HTML 文件返回给浏 览器&#xff0c;也就是静态 html 文件&#xff0c;但是后期随着网站功能增多网站开发也越来越复杂&#xff0c;以至于出现动态技 术&…...

0x01 GlassFish 任意文件读取漏洞复现

参考文章&#xff1a; 应用服务器glassfish任意文件读取漏洞 - SecPulse.COM | 安全脉搏 fofa 搜索使用该服务器的网站 网络空间测绘&#xff0c;网络空间安全搜索引擎&#xff0c;网络空间搜索引擎&#xff0c;安全态势感知 - FOFA网络空间测绘系统 "glassfish"&…...

RLOC_ORIGIN

RLOC_ORIGIN属性为相对放置的对象提供绝对位置或LOC RTL设计中的宏&#xff08;RPM&#xff09;。有关定义RPM和使用 RLOC_ORIGIN属性&#xff0c;请参阅《Vivado Design Suite用户指南&#xff1a;使用约束》 &#xff08;UG903&#xff09;[参考文献19]。 RPM是通过使用H_set…...

【Python】成功解决 NameError: name ‘reload‘ is not defined

【Python】成功解决 NameError: name ‘reload’ is not defined 下滑即可查看博客内容 &#x1f308; 欢迎莅临我的个人主页 &#x1f448;这里是我静心耕耘深度学习领域、真诚分享知识与智慧的小天地&#xff01;&#x1f387; &#x1f393; 博主简介&#xff1a;985高校…...

Android.bp和Android.mk文件有的区别

文章目录 1. 构建系统2. 语法和格式3. 可维护性和扩展性4. 编译效率5. 未来趋势 在Android的构建系统中&#xff0c; Android.mk和 android.bp是用于定义如何编译项目文件的两种文件类型&#xff0c;它们有一些显著的区别。 1. 构建系统 Android.mk&#xff1a;使用于基于GN…...

思科设备静态路由实验

拓扑及需求 网络拓扑及 IP 编址如图所示&#xff1b;PC1 及 PC2 使用路由器模拟&#xff1b;在 R1、R2、R3 上配置静态路由&#xff0c;保证全网可达&#xff1b;在 R1、R3 上删掉上一步配置的静态路由&#xff0c;改用默认路由&#xff0c;仍然要求全网可达。 各设备具体配置…...

学习笔记第二十九天

IPC 进程间通信方式&#xff1a;共享内存 原理 共享内存是最高效的进程间通信方式之一&#xff0c;因为它允许两个或多个进程直接访问同一块物理内存区域。这种机制避免了数据在用户空间和内核空间之间的频繁拷贝&#xff0c;从而显著提高了数据传输的效率。 在Linux系统中&…...

Apache Paimon走在正确的道路上|一些使用体验和未来判断

Apache Paimon这个框架大家应该都不陌生了。 在实际工作中大家应该多多少少都用到&#xff0c;这个文章是一个简单的使用体会。不涉及湖框架的拉踩&#xff0c;我们的着眼点是解决实际问题。 我来结合自身体会跟大家说说Paimon这个框架和对未来的一些判断。大家可以参考&#x…...

安装MySQL入门基础指令

一.安装MySQL(以5.7版本为例) 1.一路默认安装&#xff0c;截图供大家参考 修改自己window安装名字即可 2.配置环境变量 C:\Program Files\MySQL\MySQL Server 5.7\bin 写入系统环境变量即可在window窗口使用其服务了 3.登录MySQL服务 进入控制台输入命令 mysql -u root …...

搜维尔科技:【研究】Haption Virtuose外科手术触觉视觉学习系统的开发和评估

Haption面临挑战 除此之外&#xff0c;外科医生有时会对骨组织进行非常复杂的手术&#xff0c;其中一个例子是人工耳蜗的手术植入。重要的是要避免神经或血管等危险结构受伤&#xff0c;并尽可能轻柔地进行手术。在外科医生能够安全、无差错地进行此类手术之前&#xff0c;需要…...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)

题目&#xff1a;3442. 奇偶频次间的最大差值 I 思路 &#xff1a;哈希&#xff0c;时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况&#xff0c;哈希表这里用数组即可实现。 C版本&#xff1a; class Solution { public:int maxDifference(string s) {int a[26]…...

Vue记事本应用实现教程

文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展&#xff1a;显示创建时间8. 功能扩展&#xff1a;记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...

python/java环境配置

环境变量放一起 python&#xff1a; 1.首先下载Python Python下载地址&#xff1a;Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个&#xff0c;然后自定义&#xff0c;全选 可以把前4个选上 3.环境配置 1&#xff09;搜高级系统设置 2…...

【AI学习】三、AI算法中的向量

在人工智能&#xff08;AI&#xff09;算法中&#xff0c;向量&#xff08;Vector&#xff09;是一种将现实世界中的数据&#xff08;如图像、文本、音频等&#xff09;转化为计算机可处理的数值型特征表示的工具。它是连接人类认知&#xff08;如语义、视觉特征&#xff09;与…...

令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍

文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结&#xff1a; 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析&#xff1a; 实际业务去理解体会统一注…...

鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/

使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题&#xff1a;docker pull 失败 网络不同&#xff0c;需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...

Spring数据访问模块设计

前面我们已经完成了IoC和web模块的设计&#xff0c;聪明的码友立马就知道了&#xff0c;该到数据访问模块了&#xff0c;要不就这俩玩个6啊&#xff0c;查库势在必行&#xff0c;至此&#xff0c;它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据&#xff08;数据库、No…...

视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)

前言&#xff1a; 最近在做行为检测相关的模型&#xff0c;用的是时空图卷积网络&#xff08;STGCN&#xff09;&#xff0c;但原有kinetic-400数据集数据质量较低&#xff0c;需要进行细粒度的标注&#xff0c;同时粗略搜了下已有开源工具基本都集中于图像分割这块&#xff0c…...

基于SpringBoot在线拍卖系统的设计和实现

摘 要 随着社会的发展&#xff0c;社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 在线拍卖系统&#xff0c;主要的模块包括管理员&#xff1b;首页、个人中心、用户管理、商品类型管理、拍卖商品管理、历史竞拍管理、竞拍订单…...

比较数据迁移后MySQL数据库和OceanBase数据仓库中的表

设计一个MySQL数据库和OceanBase数据仓库的表数据比较的详细程序流程,两张表是相同的结构,都有整型主键id字段,需要每次从数据库分批取得2000条数据,用于比较,比较操作的同时可以再取2000条数据,等上一次比较完成之后,开始比较,直到比较完所有的数据。比较操作需要比较…...