当前位置: 首页 > news >正文

Spark2.x 入门:DStream 输出操作

在Spark应用中,外部系统经常需要使用到Spark DStream处理后的数据,因此,需要采用输出操作把DStream的数据输出到数据库或者文件系统中。

这里以《Spark2.1.0入门:DStream输出操作》中介绍的NetworkWordCountStateful.scala为基础进行修改。

把DStream输出到文本文件中

NetworkWordCountStateful.scala

import org.apache.spark._
import org.apache.spark.streaming._
import org.apache.spark.storage.StorageLevelobject NetworkWordCountStateful {def main(args: Array[String]) {//定义状态更新函数val updateFunc = (values: Seq[Int], state: Option[Int]) => {val currentCount = values.foldLeft(0)(_ + _)val previousCount = state.getOrElse(0)Some(currentCount + previousCount)}StreamingExamples.setStreamingLogLevels()  //设置log4j日志级别val conf = new SparkConf().setMaster("local[2]").setAppName("NetworkWordCountStateful")val sc = new StreamingContext(conf, Seconds(5))sc.checkpoint("file:///usr/local/spark/mycode/streaming/dstreamoutput/")    //设置检查点,检查点具有容错机制val lines = sc.socketTextStream("localhost", 9999)val words = lines.flatMap(_.split(" "))val wordDstream = words.map(x => (x, 1))val stateDstream = wordDstream.updateStateByKey[Int](updateFunc)stateDstream.print()//下面是新增的语句,把DStream保存到文本文件中stateDstream.saveAsTextFiles("file:///usr/local/spark/mycode/streaming/dstreamoutput/output.txt")sc.start()sc.awaitTermination()}
}

把DStream写入到MySQL数据库中

mysql> use spark
mysql> create table wordcount (word char(20), count int(4));
mysql> select * from wordcount
//这个时候wordcount表是空的,没有任何记录

NetworkWordCountStateful.scala

import java.sql.{PreparedStatement, Connection, DriverManager}
import java.util.concurrent.atomic.AtomicInteger
import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.streaming.StreamingContext._
import org.apache.spark.storage.StorageLevelobject NetworkWordCountStateful {def main(args: Array[String]) {//定义状态更新函数val updateFunc = (values: Seq[Int], state: Option[Int]) => {val currentCount = values.foldLeft(0)(_ + _)val previousCount = state.getOrElse(0)Some(currentCount + previousCount)}val conf = new SparkConf().setMaster("local[2]").setAppName("NetworkWordCountStateful")val sc = new StreamingContext(conf, Seconds(5))sc.checkpoint("file:///usr/local/spark/mycode/streaming/dstreamoutput/")    //设置检查点,检查点具有容错机制val lines = sc.socketTextStream("localhost", 9999)val words = lines.flatMap(_.split(" "))val wordDstream = words.map(x => (x, 1))val stateDstream = wordDstream.updateStateByKey[Int](updateFunc)stateDstream.print()//下面是新增的语句,把DStream保存到MySQL数据库中     stateDstream.foreachRDD(rdd => {//内部函数def func(records: Iterator[(String,Int)]) {var conn: Connection = nullvar stmt: PreparedStatement = nulltry {val url = "jdbc:mysql://localhost:3306/spark"val user = "root"val password = "hadoop"  //笔者设置的数据库密码是hadoop,请改成你自己的mysql数据库密码conn = DriverManager.getConnection(url, user, password)records.foreach(p => {val sql = "insert into wordcount(word,count) values (?,?)"stmt = conn.prepareStatement(sql);stmt.setString(1, p._1.trim)stmt.setInt(2,p._2.toInt)stmt.executeUpdate()})} catch {case e: Exception => e.printStackTrace()} finally {if (stmt != null) {stmt.close()}if (conn != null) {conn.close()}}}val repartitionedRDD = rdd.repartition(3)repartitionedRDD.foreachPartition(func)})sc.start()sc.awaitTermination()}
}

对于stateDstream,为了把它保存到MySQL数据库中,我们采用了如下的形式:

stateDstream.foreachRDD(function)

其中,function就是一个RDD[T]=>Unit类型的函数,对于本程序而言,就是RDD[(String,Int)]=>Unit类型的函数,也就是说,stateDstream中的每个RDD都是RDD[(String,Int)]类型(想象一下,统计结果的形式是(“hadoop”,3))。这样,对stateDstream中的每个RDD都会执行function中的操作(即把该RDD保存到MySQL的操作)。

下面看function的处理逻辑,在function部分,函数体要执行的处理逻辑实际上是下面的形式:

 def func(records: Iterator[(String,Int)]){……}val repartitionedRDD = rdd.repartition(3)repartitionedRDD.foreachPartition(func) 

也就是说,这里定义了一个内部函数func,它的功能是,接收records,然后把records保存到MySQL中。到这里,你可能会有疑问?为什么不是把stateDstream中的每个RDD直接拿去保存到MySQL中,还要调用rdd.repartition(3)对这些RDD重新设置分区数为3呢?这是因为,每次保存RDD到MySQL中,都需要启动数据库连接,如果RDD分区数量太大,那么就会带来多次数据库连接开销,为了减少开销,就有必要把RDD的分区数量控制在较小的范围内,所以,这里就把RDD的分区数量重新设置为3。然后,对于每个RDD分区,就调用repartitionedRDD.foreachPartition(func),把每个分区的数据通过func保存到MySQL中,这时,传递给func的输入参数就是Iterator[(String,Int)]类型的records。如果你不好理解下面这种调用形式:

repartitionedRDD.foreachPartition(func) //这种形式func没有带任何参数,可能不太好理解,不是那么直观

实际上,这句语句和下面的语句是等价的,下面的语句形式你可能会更好理解:

repartitionedRDD.foreachPartition(records => func(records)) 

上面这种等价的形式比较直观,为func()函数传入了一个records参数,这就正好和 def func(records: Iterator[(String,Int)])定义对应起来了,方便理解。

相关文章:

Spark2.x 入门:DStream 输出操作

在Spark应用中,外部系统经常需要使用到Spark DStream处理后的数据,因此,需要采用输出操作把DStream的数据输出到数据库或者文件系统中。 这里以《Spark2.1.0入门:DStream输出操作》中介绍的NetworkWordCountStateful.scala为基础…...

Python爬虫——简单网页抓取(实战案例)小白篇

Python 爬虫是一种强大的工具,用于从网页中提取数据。这里,我将通过一个简单的实战案例来展示如何使用 Python 和一些流行的库(如 requests 和 BeautifulSoup)来抓取网页数据。 实战案例:抓取一个新闻网站的头条新闻标…...

linux,ubuntu,使用ollama本地部署大模型llama3,模型通用,简易快速安装

文章目录 前言安装ollama启动ollama运行llama3模型查看ollama列表删除模型通过代码进行调用REST API 前言 在拥有了一条4090显卡后,那冗余的性能让你不得不去想着办法整花活,于是就想着部署个llama3,于是发现了ollama这个新大陆,…...

JS中的encodeURIComponent函数示例

JavaScript中的encodeURIComponent函数用于对字符串进行URL编码。它将字符串中的特殊字符转换为相应的编码形式,以确保字符串可以安全地嵌入到URL中。 使用encodeURIComponent函数时,它会将除了字母、数字、-、_、.、~以外的所有字符都进行编码。编码后…...

8.20 pre day bug

pre-bug1 分号省略 这些语句的分隔规则会导致一些意想不到的情形,如以下的一个示例; let m n f(bc).toString()但该语句最终会被解析为: let m n f(ab).toString();returntrue一定会被解析成 return;true;pre-bug2 Math.random()与Mat…...

位运算专题

分享丨【题单】位运算(基础/性质/拆位/试填/恒等式/思维) - 力扣(LeetCode) Leetcode 3133. 数组最后一个元素的最小值 我的答案与思路: class Solution { public: // 4 --> (100)2 7 --> (0111)2 // 5 --&g…...

HaProxy学习 —300K的TCP Socket并发连接实现(翻译)

HaProxy学习 —300K的TCP Socket并发连接实现(翻译) 1 原文链接2 原文翻译2.1 调整Linux系统参数2.2 调整HAProxy 1 原文链接 Use HAProxy to load balance 300k concurrent tcp socket connections: Port Exhaustion, Keep-alive and others&#xff0…...

92.WEB渗透测试-信息收集-Google语法(6)

免责声明:内容仅供学习参考,请合法利用知识,禁止进行违法犯罪活动! 内容参考于: 易锦网校会员专享课 上一个内容:91.WEB渗透测试-信息收集-Google语法(5) 监控的漏洞也有很多 打…...

[数据集][目标检测]木材缺陷检测数据集VOC+YOLO格式2383张10类别

数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):2383 标注数量(xml文件个数):2383 标注数量(txt文件个数):2383 标注…...

【启明智显分享】智能音箱AI大模型一站式解决方案重塑人机交互体验,2个月高效落地

2010年左右,智能系统接入音箱市场,智能音箱行业在中国市场兴起。但大潮激荡,阿里、小米、百度三大巨头凭借自身强大的资本、技术、粉丝群强势入局,形成三足鼎立态势。经过几年快速普及,智能音箱整体渗透率极高&#xf…...

逻辑与集合论基础及其在编程中的应用

目录 第一篇文章:逻辑与集合论基础及其在编程中的深度应用 引言 命题逻辑与谓词逻辑在编程中的深入应用 集合论及其在编程中的深度运用 函数的概念及其与集合的结合 总结与应用 第一篇文章:逻辑与集合论基础及其在编程中的深度应用 引言 逻辑与集…...

【无标题】为什么 pg_rewind 在 PostgreSQL 中很重要?

文章目录 pg_rewind 的工作原理使用 pg_rewind 的要求Basic Usage of pg_rewind重要注意事项:为什么 pg_rewind 需要干净关闭?无法进行干净关闭的情况处理不正常关机结论 pg_rewind 是 PostgreSQL 中的一个实用程序,用于将一个数据库集群与另一个数据库集…...

hostapd生成beacon_ie

配置文件 /data/vendor/wifi/hostapd/hostapd_wlan0.conf 配置参数 AP启动过程:1.上层配置一些参数并根据参数生成配置文件 2.init的时候设置默认参数并加载配置文件上的参数(如果重复,以配置文件上的设置优先) 相关函数及结构…...

leetcode349:两个数组的交集

两个数组的交集 给定两个数组 nums1 和 nums2 &#xff0c;返回 它们的 交集 。输出结果中的每个元素一定是 唯一 的。我们可以 不考虑输出结果的顺序 。 public int[] intersection(int[] nums1, int[] nums2) {ArrayList<Integer> list new ArrayList<>();Has…...

Metasploit漏洞利用系列(八):MSF渗透测试 - PHPCGI漏洞利用实战

在本系列的第八篇文章中&#xff0c;我们将深入探索如何利用Metasploit Framework (MSF) 来针对PHPCGI (PHP Common Gateway Interface) 的漏洞进行渗透测试。PHPCGI作为一种将Web服务器与PHP脚本交互的方式&#xff0c;其不恰当的配置或老旧版本中可能存在的漏洞常被攻击者利用…...

基于python的主观题自动阅卷系统设计与实现

博主介绍&#xff1a; 大家好&#xff0c;本人精通Java、Python、C#、C、C编程语言&#xff0c;同时也熟练掌握微信小程序、Php和Android等技术&#xff0c;能够为大家提供全方位的技术支持和交流。 我有丰富的成品Java、Python、C#毕设项目经验&#xff0c;能够为学生提供各类…...

计算机毕业设计仪器设备管理系统-折旧-报废-转移-借出-归还

本文主要阐述如何采用利用网络数据库技术&#xff0c;在信息管理系统中合理的进行管理。在全面解析系统的设计理念以及设计手段&#xff0c;将系统进程中的所需的工具以及技术进行综合的设计&#xff0c;重点解析信息管理情况以及自动化管理进程&#xff0c;主要包括&#xff1…...

DAY37

零钱兑换 II public int change(int amount, int[] coins) {int []dpnew int[amount1];dp[0]1;for(int i0;i<coins.length;i){for(int jcoins[i];j<amount;j){dp[j]dp[j-coins[i]];}}return dp[amount];}组合总和 Ⅳ public int combinationSum4(int[] nums, int target)…...

将iso格式的镜像文件转化成云平台能安装的镜像格式(raw/vhd/QCOW2/VMDK )亲测--图文详解

1.首先,你将你的iso的文件按照正常的流程和需求安装到你的虚拟机中,我这里使用的是vmware,安装完成之后,关机。再次点开你安装好的那台虚拟机的窗口,如下图 选中要导出的镜像,镜像需要关机 2.点击工具栏的文件------选择 导出 整个工程到 ovf 格式—这里你可以选择你要导…...

Numba加速计算(CPU + GPU + prange)

文章目录 加速方法&#xff1a;Numba、CuPy、PyTorch、PyCUDA、Dask、Rapids一、Numba简介二、Numba类型&#xff1a;CPU GPU三、项目实战 —— 数组的每个元素加23.1、使用 python - range 循环计算 —— &#xff08;时耗&#xff1a;137.37 秒&#xff09;3.2、使用 python…...

SpringBoot-17-MyBatis动态SQL标签之常用标签

文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...

【网络】每天掌握一个Linux命令 - iftop

在Linux系统中&#xff0c;iftop是网络管理的得力助手&#xff0c;能实时监控网络流量、连接情况等&#xff0c;帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...

从WWDC看苹果产品发展的规律

WWDC 是苹果公司一年一度面向全球开发者的盛会&#xff0c;其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具&#xff0c;对过去十年 WWDC 主题演讲内容进行了系统化分析&#xff0c;形成了这份…...

基于Flask实现的医疗保险欺诈识别监测模型

基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施&#xff0c;由雇主和个人按一定比例缴纳保险费&#xff0c;建立社会医疗保险基金&#xff0c;支付雇员医疗费用的一种医疗保险制度&#xff0c; 它是促进社会文明和进步的…...

基于Docker Compose部署Java微服务项目

一. 创建根项目 根项目&#xff08;父项目&#xff09;主要用于依赖管理 一些需要注意的点&#xff1a; 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件&#xff0c;否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...

【开发技术】.Net使用FFmpeg视频特定帧上绘制内容

目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法&#xff0c;当前调用一个医疗行业的AI识别算法后返回…...

是否存在路径(FIFOBB算法)

题目描述 一个具有 n 个顶点e条边的无向图&#xff0c;该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序&#xff0c;确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数&#xff0c;分别表示n 和 e 的值&#xff08;1…...

#Uniapp篇:chrome调试unapp适配

chrome调试设备----使用Android模拟机开发调试移动端页面 Chrome://inspect/#devices MuMu模拟器Edge浏览器&#xff1a;Android原生APP嵌入的H5页面元素定位 chrome://inspect/#devices uniapp单位适配 根路径下 postcss.config.js 需要装这些插件 “postcss”: “^8.5.…...

【前端异常】JavaScript错误处理:分析 Uncaught (in promise) error

在前端开发中&#xff0c;JavaScript 异常是不可避免的。随着现代前端应用越来越多地使用异步操作&#xff08;如 Promise、async/await 等&#xff09;&#xff0c;开发者常常会遇到 Uncaught (in promise) error 错误。这个错误是由于未正确处理 Promise 的拒绝&#xff08;r…...

加密通信 + 行为分析:运营商行业安全防御体系重构

在数字经济蓬勃发展的时代&#xff0c;运营商作为信息通信网络的核心枢纽&#xff0c;承载着海量用户数据与关键业务传输&#xff0c;其安全防御体系的可靠性直接关乎国家安全、社会稳定与企业发展。随着网络攻击手段的不断升级&#xff0c;传统安全防护体系逐渐暴露出局限性&a…...