LeetCode 算法:划分字母区间 c++
- 原题链接🔗:划分字母区间
- 难度:中等⭐️⭐️
题目
给你一个字符串 s 。我们要把这个字符串划分为尽可能多的片段,同一字母最多出现在一个片段中。
注意,划分结果需要满足:将所有划分结果按顺序连接,得到的字符串仍然是 s 。
返回一个表示每个字符串片段的长度的列表。
示例 1:
输入:s = “ababcbacadefegdehijhklij”
输出:[9,7,8]
解释:
划分结果为 “ababcbaca”、“defegde”、“hijhklij” 。
每个字母最多出现在一个片段中。
像 “ababcbacadefegde”, “hijhklij” 这样的划分是错误的,因为划分的片段数较少。
示例 2:
输入:s = “eccbbbbdec”
输出:[10]
提示:
- 1 <= s.length <= 500
- s 仅由小写英文字母组成
贪心算法
贪心算法是一种在每一步选择中都采取在当前状态下最好或最优的选择,从而希望导致结果是全局最好或最优的算法策略。它在有最优子结构的问题中尤为有效。最优子结构的意思是局部最优解能决定全局最优解。
贪心算法不保证会得到最优解,但在某些问题上贪心算法的解是足够好的。以下是贪心算法的一些关键特性:
- 贪心选择性质:算法在每一步都选择当前看起来最优的选项,而不考虑未来的选择。
- 最优子结构:问题可以分解为子问题,子问题的最优解能组成原问题的最优解。
- 可行性:贪心选择必须在当前状态下可行。
贪心算法通常用于求解以下类型的问题:
- 资源分配问题
- 调度问题
- 网络流问题
- 集合覆盖问题
- 最小生成树问题(如 Prim 算法和 Kruskal 算法)
贪心算法的实现步骤通常包括:
- 定义问题的一个解决方案。
- 遍历所有候选解。
- 选择当前状态下的最优候选解,并将其添加到当前解决方案中。
- 重复步骤2和3,直到达到问题的结束条件。
贪心算法的优点是简单、直观,且在某些情况下效率很高。然而,缺点是它不总是能得到全局最优解,特别是当问题不具有最优子结构时。
题解
- 解题思路:
这个问题是一个典型的贪心算法问题,我们可以通过以下步骤来解决:
初始化:创建一个空列表 result 用来存储每个片段的长度。
遍历字符串:从左到右遍历字符串 s。
记录当前字母:使用一个变量 current_char 记录当前遍历到的字母。
计数:使用一个变量 count 来记录当前字母连续出现的次数。
更新片段长度:每当遇到一个新的字母,或者到达字符串的末尾时,将 count 加入到 result 列表中,并重置 count 和 current_char。
特殊情况处理:如果当前字母和下一个字母相同,则 count 自增,继续遍历;如果不同,将当前 count 存入 result 并更新 current_char 和 count。
返回结果:遍历结束后,返回 result 列表。
- c++ demo:
#include <iostream>
#include <vector>
#include <unordered_map>using namespace std;class Solution {
public:vector<int> partitionLabels(string s) {vector<int> result;unordered_map<char, int> last_position;int start = 0, end = -1, length = 0;// 记录每个字符最后一次出现的位置for (int i = 0; i < s.length(); ++i) {last_position[s[i]] = i;}for (int i = 0; i < s.length(); ++i) {// 更新当前片段的结束位置end = max(end, last_position[s[i]]);length++;// 如果当前位置是当前片段的结束位置,则添加到结果中if (i == end) {result.push_back(length);start = i + 1; // 重置片段开始位置end = -1; // 重置片段结束位置length = 0; // 重置片段长度}}return result;}
};int main() {Solution solution;string s = "ababcbacadefegdehijhklij";vector<int> result = solution.partitionLabels(s);for (int length : result) {cout << length << " ";}cout << endl;return 0;
}
- 输出结果:
9 7 8
- 代码仓库地址:partitionLabels
相关文章:
LeetCode 算法:划分字母区间 c++
原题链接🔗:划分字母区间难度:中等⭐️⭐️ 题目 给你一个字符串 s 。我们要把这个字符串划分为尽可能多的片段,同一字母最多出现在一个片段中。 注意,划分结果需要满足:将所有划分结果按顺序连接&#…...
PMP备考指南:策略、时间安排与心得分享
准备和时间安排,我是工作的时间把它顺便考了,大约花了一个月左右时间备考,前面的时间都在筹办婚礼,根本没时间,最后一个月都差点想放弃了,但想想还是冲一把就没有选择延考。 干货见下: ▌&…...
CentOS上通过frp实现HTTPS访问内网
要在CentOS上通过frp实现HTTPS访问内网,你需要按照以下步骤操作: 在外网服务器上安装frps(frp服务端)。 在外网服务器上配置frps,编辑配置文件frps.ini。 在frps服务器上启动frps服务。 在内网服务器上安装frpc&…...
短视频SDK解决方案,高效集成,助力商业变现
美摄科技,作为业界领先的多媒体技术服务商,其全面升级的短视频SDK解决方案,旨在为开发者与内容创作者提供一站式、高效能的创作工具,让每一个灵感都能瞬间转化为触动人心的视频作品。 【一站式解决方案,重塑短视频创作…...
C++系列-继承方式
继承方式 继承的语法继承方式:继承方式的特点继承方式的举例 继承可以减少重复的代码。继承允许我们依据另一个类来定义一个类,这使得创建和维护一个应用程序变得更容易。基类父类,派生类子类,派生类是在继承了基类的部分成员基础…...
web前端之选项卡的实现、动态添加类名、动态移除类名、动态添加样式、激活、间距、tabBar
MENU 原生(一)原生(二)vue(一) 原生(一) 效果图 html 代码 <div class"card"><div class"tab_bar"><div class"item" onclick"handleTabBar(this)">tabBar1</div><div class"item" onclick&qu…...
sql 优化,提高查询速度
文章目录 一、前言二、建议2.1 使用索引2.2 避免使用select *2.3. 使用表连接代替子查询2.4. 优化WHERE子句,减少返回结果集的大小2.5 用union all代替union2.6 使用合适的聚合策略2.7 避免在WHERE子句中使用函数2.8 使用EXPLAIN分析查询2.9 小表驱动大表2.10 使用窗…...
springboot后端开发-自定义参数校验器
背景 在使用springboot进行后端开发的时候,经常会遇到数据校验的问题, 有时候可能默认的校验器不足以满足自己的需求, 这个时候就需要开发一个自己的校验器 在 Spring Boot 中自定义参数校验器通常涉及以下几个步骤: 1. 定义注解…...
springboot社区帮扶对象管理系统论文源码调试讲解
第2章 开发环境与技术 社区帮扶对象管理系统的编码实现需要搭建一定的环境和使用相应的技术,接下来的内容就是对社区帮扶对象管理系统用到的技术和工具进行介绍。 2.1 MYSQL数据库 本课题所开发的应用程序在数据操作方面是不可预知的,是经常变动的&…...
EmguCV学习笔记 VB.Net 6.2 轮廓处理
版权声明:本文为博主原创文章,转载请在显著位置标明本文出处以及作者网名,未经作者允许不得用于商业目的。 EmguCV是一个基于OpenCV的开源免费的跨平台计算机视觉库,它向C#和VB.NET开发者提供了OpenCV库的大部分功能。 教程VB.net版本请访问…...
【Python的魅力】:利用Pygame实现游戏坦克大战——含完整源码
文章目录 一、游戏运行效果二、代码实现2.1 项目搭建2.2 加载我方坦克2.3 加载敌方坦克2.4 添加爆炸效果2.5 坦克大战之音效处理 三、完整代码 一、游戏运行效果 二、代码实现 坦克大战游戏 2.1 项目搭建 本游戏主要分为两个对象,分别是我方坦克和敌方坦克。用户可…...
【机器学习】经典CNN架构
🌈个人主页: 鑫宝Code 🔥热门专栏: 闲话杂谈| 炫酷HTML | JavaScript基础 💫个人格言: "如无必要,勿增实体" 文章目录 经典CNN架构1. 引言2. LeNet3. AlexNet4. VGGNet5. GoogLeNet(Inception)6. Res…...
图像数据处理21
五、边缘检测 5.2基于二阶导数的边缘检测 一阶导数(如Sobel、Prewitt算子)能够捕捉到灰度值的快速变化,但有时会因检测到过多的边缘点而导致边缘线过粗。为了更加精确地定位边缘位置,可以利用二阶导数的零交叉点。零交叉点是是函…...
day37动态规划+三.Github链接本地仓库
一.动态规划 474.一和零 给你一个二进制字符串数组 strs 和两个整数 m 和 n 。 请你找出并返回 strs 的最大子集的长度,该子集中 最多 有 m 个 0 和 n 个 1 。 如果 x 的所有元素也是 y 的元素,集合 x 是集合 y 的 子集 。 思路:这道题更像是另一种的0-…...
设备运维故障排查与修复技巧
运维中最常见的40个故障问题及其解决方法: 1. 网络不通问题:无法访问网络资源。 解决方法:检查物理线路、交换机端口、网卡驱动和配置,使用ping、traceroute等工具定位问题。 2. 网络速度慢问题:访问网络资源速度慢。 解决方法:分析带宽使用情况,检查是否存在广播风…...
探索Python的自动化魔法:AutoIt库揭秘
文章目录 探索Python的自动化魔法:AutoIt库揭秘第一部分:背景介绍第二部分:AutoIt是什么?第三部分:如何安装AutoIt库?第四部分:AutoIt的五个简单函数第五部分:场景应用第六部分&…...
【I/O多路复用】
基于I/O多路复用的并发编程 I/O实现I/O多路复用select优缺点 pollepoll优点 I/O I/O复用是基于一个单进程或单线程的一个执行流当中监控多个输入输出流的技术(网络套接字或者文件描述符进行监控)。单进程或单线程,允许多个用户对单进程发起连…...
【python报错已解决】“IndexError: list index out of range”
🎬 鸽芷咕:个人主页 🔥 个人专栏: 《C干货基地》《粉丝福利》 ⛺️生活的理想,就是为了理想的生活! 引言 你是否在处理Python列表时遇到了“IndexError: list index out of range”的错误?这个错误可能会让你的程序中…...
oracle和mysql查询某字段在哪个表中
oracle和mysql查询某字段在哪个表中 oracle的 select TABLE_NAME from user_tab_columns where COLUMN_NAME字段名mysql的: select table_schema ,table_name from information_schema.columns where column_name ‘字段名’ 查询结果table_schema为数据库名&a…...
TCP vs UDP:揭秘可靠性与效率之争
概述 今天我们开始主要讲解TCP的相关知识点。在之前讲解分层章节的时候,我们提到过一个重要观点。在网络层及以下几层,更多的是让主机与主机建立连接,也就是说你的电脑需要知道另一台电脑在哪里才能连接上它。然而,在网络中的通信…...
C++初阶-list的底层
目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...
SCAU期末笔记 - 数据分析与数据挖掘题库解析
这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...
【单片机期末】单片机系统设计
主要内容:系统状态机,系统时基,系统需求分析,系统构建,系统状态流图 一、题目要求 二、绘制系统状态流图 题目:根据上述描述绘制系统状态流图,注明状态转移条件及方向。 三、利用定时器产生时…...
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列,以便知晓哪些列包含有价值的数据,…...
C++使用 new 来创建动态数组
问题: 不能使用变量定义数组大小 原因: 这是因为数组在内存中是连续存储的,编译器需要在编译阶段就确定数组的大小,以便正确地分配内存空间。如果允许使用变量来定义数组的大小,那么编译器就无法在编译时确定数组的大…...
Go 并发编程基础:通道(Channel)的使用
在 Go 中,Channel 是 Goroutine 之间通信的核心机制。它提供了一个线程安全的通信方式,用于在多个 Goroutine 之间传递数据,从而实现高效的并发编程。 本章将介绍 Channel 的基本概念、用法、缓冲、关闭机制以及 select 的使用。 一、Channel…...
C/C++ 中附加包含目录、附加库目录与附加依赖项详解
在 C/C 编程的编译和链接过程中,附加包含目录、附加库目录和附加依赖项是三个至关重要的设置,它们相互配合,确保程序能够正确引用外部资源并顺利构建。虽然在学习过程中,这些概念容易让人混淆,但深入理解它们的作用和联…...
Chrome 浏览器前端与客户端双向通信实战
Chrome 前端(即页面 JS / Web UI)与客户端(C 后端)的交互机制,是 Chromium 架构中非常核心的一环。下面我将按常见场景,从通道、流程、技术栈几个角度做一套完整的分析,特别适合你这种在分析和改…...
rknn toolkit2搭建和推理
安装Miniconda Miniconda - Anaconda Miniconda 选择一个 新的 版本 ,不用和RKNN的python版本保持一致 使用 ./xxx.sh进行安装 下面配置一下载源 # 清华大学源(最常用) conda config --add channels https://mirrors.tuna.tsinghua.edu.cn…...
【免费数据】2005-2019年我国272个地级市的旅游竞争力多指标数据(33个指标)
旅游业是一个城市的重要产业构成。旅游竞争力是一个城市竞争力的重要构成部分。一个城市的旅游竞争力反映了其在旅游市场竞争中的比较优势。 今日我们分享的是2005-2019年我国272个地级市的旅游竞争力多指标数据!该数据集源自2025年4月发表于《地理学报》的论文成果…...
