当前位置: 首页 > news >正文

将语义分割的标签转换为实例分割(yolo)的标签

语义分割的标签(目标处为255,其余处为0)
在这里插入图片描述
实例分割的标签(yolo.txt),描述边界的多边形顶点的归一化位置
在这里插入图片描述
绘制在原图类似蓝色的边框所示。
在这里插入图片描述

废话不多说,直接贴代码;

import os
import cv2
import numpy as np
import shutildef img2label(imgPath, labelPath, imgbjPath, seletName):# 检查labelPath文件夹是否存在if not os.path.exists(labelPath):os.makedirs(labelPath)if not os.path.exists(imgbjPath):os.makedirs(imgbjPath)imgList = os.listdir(imgPath)for imgName in imgList:# 筛选if imgName.split('_')[0] != seletName and seletName != '':continueprint(imgName)img = cv2.imread(imgPath + imgName, cv2.IMREAD_COLOR)h, w, _ = img.shape# print(h, w)GrayImage=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) #图片灰度化处理ret, binary = cv2.threshold(GrayImage,40,255,cv2.THRESH_BINARY) #图片二值化,灰度值大于40赋值255,反之0# ret, binary = cv2.threshold(binary, 80, 255, cv2.THRESH_BINARY_INV)    # (黑白二值反转)cv2.imwrite(r'denoisedfz.png', binary) #保存图片# 腐蚀# kernel = np.ones((3,3),np.uint8) # binary = cv2.erode(binary,kernel,iterations = 3)thresholdL = h/100 * w/100   #设定阈值thresholdH = h/1 * w/1   #设定阈值#cv2.fingContours寻找图片轮廓信息"""提取二值化后图片中的轮廓信息 ,返回值contours存储的即是图片中的轮廓信息,是一个向量,内每个元素保存了一组由连续的Point点构成的点的集合的向量,每一组Point点集就是一个轮廓,有多少轮廓,向量contours就有多少元素"""contours,hierarch=cv2.findContours(binary,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_TC89_L1)contoursNorm = []objs= []# print(contours)for i in range(len(contours)):area = cv2.contourArea(contours[i]) #计算轮廓所占面积# print(area)if area > thresholdL and area < thresholdH:obj = ['0']for point in contours[i]:obj.append(str(point[0][0] * 1.0 / w)) # 获取xobj.append(str(point[0][1] * 1.0 / h)) # 获取ycontoursNorm.append(contours[i])objs.append(obj)# print(objs[10])# 查看效果cv2.drawContours(img, contoursNorm, -1,(255,0,0),2)cv2.imwrite(imgbjPath+imgName, img) #保存图片if len(objs) == 0:print('不保存标签,跳过!')continue# 写入txtrealName = imgName.split('-l')[0]f=open(labelPath + realName + '.txt',"w")for obj in objs:f.writelines(' '.join(obj))f.writelines('\n')f.close()# break# oridata 保存着原图像
# maskdata 保存着标签图像
# lab 保存这yolo格式的标签文件
# bj 保存着标记好边界的图像def OrganizeImages(path):imgs = os.listdir(path)for im in imgs:imPath = os.path.join(path, im)if im.split('.')[-1] == 'jpg':# 原图像# 移动到oridatasource_path = imPathdestination_path = 'data\\oridata\\' + imshutil.copy(source_path, destination_path)if im.split('.')[-1] == 'png':# mask label# 移动到maskdatasource_path = imPathdestination_path = 'data\\maskdata\\' + imshutil.copy(source_path, destination_path)if __name__ == '__main__':img2label(imgPath='data\\maskdata\\',  # maskdata 保存着标签图像labelPath='data\\lab\\',     # lab 保存这yolo格式的标签文件imgbjPath = 'data\\bj\\',    # bj 保存着标记好边界的图像seletName='')

相关文章:

将语义分割的标签转换为实例分割(yolo)的标签

语义分割的标签&#xff08;目标处为255&#xff0c;其余处为0&#xff09; 实例分割的标签&#xff08;yolo.txt&#xff09;,描述边界的多边形顶点的归一化位置 绘制在原图类似蓝色的边框所示。 废话不多说&#xff0c;直接贴代码&#xff1b; import os import cv2 imp…...

QT 遍历ini配置文件

在 Qt 中&#xff0c;处理 INI 配置文件是一项常见任务&#xff0c;通常使用 QSettings 类来读取和写入这些文件。QSettings 提供了一种方便的方式来操作 INI 文件中的配置数据。下面是如何使用 QSettings 遍历和处理 INI 配置文件的示例。 示例代码 假设有一个名为 config.i…...

ecmascript和javascript的区别详细讲解

​ 大家好&#xff0c;我是程序员小羊&#xff01; 前言&#xff1a; ECMAScript 和 JavaScript是紧密相关的术语&#xff0c;但它们有着各自明确的定义和用途。要理解它们的区别&#xff0c;首先需要从它们的起源、发展历史、技术架构以及具体应用领域来分析。以下是对它们的详…...

【Python报错已解决】“ModuleNotFoundError: No module named ‘timm‘”

&#x1f3ac; 鸽芷咕&#xff1a;个人主页 &#x1f525; 个人专栏: 《C干货基地》《粉丝福利》 ⛺️生活的理想&#xff0c;就是为了理想的生活! 文章目录 引言&#xff1a;一、问题描述1.1 报错示例&#xff1a;当我们尝试导入timm库时&#xff0c;可能会看到以下错误信息。…...

「图::存储」链式邻接表|链式前向星(C++)

前置知识 上一节我们介绍了三种基本的存图结构&#xff1a; 「图」邻接矩阵|边集数组|邻接表&#xff08;C&#xff09; 概述 他们各有优劣&#xff0c;为了综合他们的性能&#xff0c; 这一节我们来介绍两种以这三种结构为基础实现的高级存储结构&#xff1a;链式邻接表|…...

《Cloud Native Data Center Networking》(云原生数据中心网络设计)读书笔记 -- 10数据中心中的BGP

本章解答以下问题&#xff1a; ASN&#xff0c;团体&#xff08;community&#xff09;&#xff0c;属性&#xff08;attribute&#xff09;&#xff0c;最佳路径这些BGP术语是什么疑似&#xff1f;在数据中心中应该使用eBGP还是iBGP?在数据中心使用BGP时&#xff0c;应采用什…...

unity游戏开发——标记物体 一目了然

Unity游戏开发:标记物体,让开发变得一目了然 “好读书&#xff0c;不求甚解&#xff1b;每有会意&#xff0c;便欣然忘食。” 本文目录&#xff1a; Unity游戏开发 Unity游戏开发:标记物体,让开发变得一目了然前言1. 什么是Tag&#xff1f;2. Unity中如何添加和管理Tag步骤1&am…...

vue 项目打包图片没有打包进去问题解决

解决方法1.在导入图片的文件中通过 import 引入图片 这种方法只适合图片少的情况 <template> <img :srctestImg/> </template> <script> import testImg from /assets/img/testImg.png </script>2.封装公共方法,通过 new URL() 的方式…...

TCP的传输速度

如何确定TCP最大传输速度&#xff1f; TCP 的传输速度&#xff0c;受限于发送窗⼝&#xff0c;接收窗⼝以及⽹络设备传输能⼒。 其中&#xff0c;窗⼝⼤⼩由内核缓冲区⼤⼩决定。如果缓冲区与⽹络传输能⼒匹配&#xff0c;那么缓冲区的利⽤率就达到了最⼤化。 如何计算网络传…...

直播间的“骆驼”比沙漠还多?刀郎演唱会惊现“骆驼”

“送战友&#xff0c;踏征程&#xff0c;默默无语两行泪&#xff0c;耳边响起驼铃声……”8月30日&#xff0c;刀郎知交线上演唱会在微信视频号直播。一曲《驼铃》&#xff0c;勾起了无数人的回忆&#xff0c;离别的伤感、人性的关怀与温暖&#xff0c;通过悠然的旋律流入千万听…...

Android Studio gradle下载太慢了!怎么办?(已解决)

Android Studio&#xff01;你到底干了什么&#xff1f;&#xff01; 不能高速下载gradle&#xff0c;我等如何进行app编程&#xff1f;&#xff01; 很简单&#xff0c;我修改gradle地址不就是了。 找到gradle-wrapper.properties文件 修改其中distributionUrl的地址。 将 ht…...

安卓版Infuse来了 打造自己的影视墙

如何让安卓设备上的视频播放更高效&#xff1f;AfuseKt 或许能给出答案 AfuseKt 是一款功能强大的安卓网络视频播放器&#xff0c;专为满足用户对多样化媒体播放需求而设计。它不仅支持多种流行的在线存储和媒体管理平台&#xff0c;如阿里云盘、Alist、WebDAV 和 Emby 等&…...

【Python时序预测系列】高创新模型:基于xlstm模型实现单变量时间序列预测(案例+源码)

这是我的第351篇原创文章。 一、引言 LSTM在1990年代被提出&#xff0c;用以解决循环神经网络&#xff08;RNN&#xff09;的梯度消失问题。LSTM在多种领域取得了成功&#xff0c;但随着Transformer技术的出现&#xff0c;其地位受到了挑战。如果将LSTM扩展到数十亿参数&#…...

Ubuntu 22.04 系统中 ROS2安装

Ubuntu 22.04 系统中 ROS2安装 ROS2安装 # 多窗口终端工具 sudo apt update sudo apt install tilix打开软件&#xff0c;点击右上角图标进入设置 -> General -> size120, columns:48Command -> 勾选第一个 Run command as login shellColor -> Theme Color 选择…...

Vue内置指令v-once、v-memo和v-pre提升性能?

前言 Vue的内置指令估计大家都用过不少&#xff0c;例如v-for、v-if之类的就是最常用的内置指令&#xff0c;但今天给大家介绍几个平时用的比较少的内置指令。毕竟这几个Vue内置指令可用可不用&#xff0c;不用的时候系统正常跑&#xff0c;但在对的地方用了却能提升系统性能&…...

OpenHarmony轻松玩转GIF数据渲染

OpenAtom OpenHarmony&#xff08;以下简称“OpenHarmony”&#xff09;提供了Image组件支持GIF动图的播放&#xff0c;但是缺乏扩展能力&#xff0c;不支持播放控制等。今天介绍一款三方库——ohos-gif-drawable三方组件&#xff0c;带大家一起玩转GIF的数据渲染&#xff0c;搞…...

torch.clip函数介绍

PyTorch 中,torch.clip函数用于对张量中的元素进行裁剪,将其值限制在指定的范围内。 一、函数语法及参数解释 torch.clip(input, min=None, max=None, out=None) input:输入张量,即要进行裁剪的张量。min(可选):裁剪的下限。如果未指定,则不进行下限裁剪。max(可选)…...

西北工业大学oj题-兔子生崽

题目描述&#xff1a; 兔子生崽问题。假设一对小兔的成熟期是一个月&#xff0c;即一个月可长成成兔&#xff0c;每对成兔每个月可以生一对小兔&#xff0c;一对新生的小兔从第二个月起就开始生兔子&#xff0c;试问从一对兔子开始繁殖&#xff0c;一年以后可有多少对兔子&…...

【Go语言成长之路】 模糊测试

文章目录 模糊测试一、前提二、创建项目三、添加待测试代码四、添加单元测试五、添加模糊测试 模糊测试 ​ 本教程介绍了 Go 中模糊测试的基础知识。通过模糊测试&#xff0c;随机数据会针对您的测试运行&#xff0c;以尝试找到漏洞或导致崩溃的输入。可以通过模糊测试发现的漏…...

异或运算的高级应用和Briankernighan算法

本篇文章主要回顾一下计算机的位运算&#xff0c;处理一些位运算的巧妙操作。 特别提醒&#xff1a;实现位运算要注意溢出和符号扩展等问题。 先看一个好玩的问题&#xff1a; $Problem1 $ 黑白球概率问题 袋子里一共a个白球&#xff0c;b个黑球&#xff0c;每次从袋子里拿…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现

目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表

1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...

【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)

可以使用Sqliteviz这个网站免费编写sql语句&#xff0c;它能够让用户直接在浏览器内练习SQL的语法&#xff0c;不需要安装任何软件。 链接如下&#xff1a; sqliteviz 注意&#xff1a; 在转写SQL语法时&#xff0c;关键字之间有一个特定的顺序&#xff0c;这个顺序会影响到…...

linux 错误码总结

1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...

【Go】3、Go语言进阶与依赖管理

前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课&#xff0c;做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程&#xff0c;它的核心机制是 Goroutine 协程、Channel 通道&#xff0c;并基于CSP&#xff08;Communicating Sequential Processes&#xff0…...

华为云Flexus+DeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建

华为云FlexusDeepSeek征文&#xff5c;DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建 前言 如今大模型其性能出色&#xff0c;华为云 ModelArts Studio_MaaS大模型即服务平台华为云内置了大模型&#xff0c;能助力我们轻松驾驭 DeepSeek-V3/R1&#xff0c;本文中将分享如何…...

Device Mapper 机制

Device Mapper 机制详解 Device Mapper&#xff08;简称 DM&#xff09;是 Linux 内核中的一套通用块设备映射框架&#xff0c;为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程&#xff0c;并配以详细的…...

省略号和可变参数模板

本文主要介绍如何展开可变参数的参数包 1.C语言的va_list展开可变参数 #include <iostream> #include <cstdarg>void printNumbers(int count, ...) {// 声明va_list类型的变量va_list args;// 使用va_start将可变参数写入变量argsva_start(args, count);for (in…...

十九、【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建

【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建 前言准备工作第一部分:回顾 Django 内置的 `User` 模型第二部分:设计并创建 `Role` 和 `UserProfile` 模型第三部分:创建 Serializers第四部分:创建 ViewSets第五部分:注册 API 路由第六部分:后端初步测…...

xmind转换为markdown

文章目录 解锁思维导图新姿势&#xff1a;将XMind转为结构化Markdown 一、认识Xmind结构二、核心转换流程详解1.解压XMind文件&#xff08;ZIP处理&#xff09;2.解析JSON数据结构3&#xff1a;递归转换树形结构4&#xff1a;Markdown层级生成逻辑 三、完整代码 解锁思维导图新…...