当前位置: 首页 > news >正文

【刷题笔记】删除并获取最大点数粉刷房子

欢迎来到 破晓的历程的 博客

⛺️不负时光,不负己✈️

题目一

题目链接:删除并获取最大点数
思路:

  • 预处理在这里插入图片描述
  • 状态表示

在这里插入图片描述

  • 状态转移方程在这里插入图片描述
    代码如下
class Solution {
public:int deleteAndEarn(vector<int>& nums) {int N=10001;int arry[N]={0};for(auto x:nums){arry[x]+=x;}//接下来,就是打家劫舍问题vector<int> f(N);vector<int> g(N);f[0]=arry[0];g[0]=0;for(int i=0;i<N;i++){f[i]=g[i-1]+arry[i];g[i]=max(g[i-1],f[i-1]);}return max(f[10000],g[10000]);English}
};

思考:我们是如何将这道题目和打家劫舍问题联系在一起的

这道题目要求必须删除相邻的数据,和打家劫舍问题中的不能偷相邻的两家的东西非常相似。所以我们就可以将本题转化为打家劫舍问题。但是本题的数据不一定是连续的,所以我们需要预处理一步。转化成连续的。

题目二

题目链接:粉刷房子
思路
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
代码如下

class Solution {
public:int minCost(vector<vector<int>>& costs) {int m=costs.size(); if(m==1) return min(costs[0][1],costs[0][0],costs[0][2]);vector<vector<int>>dp(m+1,vector<int>(3));for(int i=1;i<m+1;i++){dp[i][0]=min(dp[i-1][1],dp[i-1][2])+costs[i-1][0];dp[i][1]=min(dp[i-1][0],dp[i-1][2])+costs[i-1][1];dp[i][2]=min(dp[i-1][0],dp[i-1][1])+costs[i-1][2];}return min(dp[m][0],dp[m][1],dp[m][2]);}
};

相关文章:

【刷题笔记】删除并获取最大点数粉刷房子

欢迎来到 破晓的历程的 博客 ⛺️不负时光&#xff0c;不负己✈️ 题目一 题目链接&#xff1a;删除并获取最大点数 思路&#xff1a; 预处理状态表示 状态转移方程 代码如下&#xff1a; class Solution { public:int deleteAndEarn(vector<int>& nums) {int N1…...

【Linux 从基础到进阶】Elasticsearch 搜索服务安装与调优

Elasticsearch 搜索服务安装与调优 引言 Elasticsearch 是一个分布式的、基于 RESTful API 的搜索和分析引擎,专为快速处理大量数据而设计。它经常被用来进行全文搜索、日志和指标分析等操作。本文将介绍如何在 CentOS 和 Ubuntu 系统上安装 Elasticsearch,并进行必要的调优…...

IMU助力JAXA空间站机器人

近日&#xff0c;日本宇宙航空研究开发机构&#xff08;JAXA&#xff09;宣布&#xff0c;在国际空间站&#xff08;ISS&#xff09;实验舱“希望号”&#xff08;Kibo&#xff09;上部署的一款移动摄像机器人将采用Epson M-G370系列惯性测量单元&#xff08;IMU&#xff09;。…...

java开发,记录一些注解和架构

最近接了一个项目&#xff0c;说是项目其实也不算是项目&#xff0c;因为是把这个项目赛到其他项目中的。 熟悉一些这个项目的功能&#xff0c;梳理了一下&#xff0c;在代码开发中主要关心pojo、entity、respository、controller、service。 在这里主要记录前3个的流程与作用…...

【2024高教社杯全国大学生数学建模竞赛】B题 生产过程中的决策问题——解题思路 代码 论文

目录 问题 1&#xff1a;抽样检测方案的设计问题 2&#xff1a;生产过程中的决策问题 3&#xff1a;多工序、多零配件的生产决策问题 4&#xff1a;重新分析次品率题目难度分析1. 统计检测方案设计的复杂性&#xff08;问题 1&#xff09;2. 多阶段生产决策的复杂性&#xff08…...

JUnit 5和Mockito进行单元测试!

1. JUnit 5 基础 JUnit 5是最新的JUnit版本&#xff0c;它引入了许多新特性&#xff0c;包括更灵活的测试实例生命周期、参数化测试、更丰富的断言和假设等。 1.1 基本注解 Test&#xff1a;标记一个方法为测试方法。 BeforeEach&#xff1a;在每个测试方法之前执行。 AfterEac…...

LeetCode 算法:完全平方数 c++

原题链接&#x1f517;&#xff1a;完全平方数难度&#xff1a;中等⭐️⭐️ 题目 给你一个整数 n &#xff0c;返回 和为 n 的完全平方数的最少数量 。 完全平方数 是一个整数&#xff0c;其值等于另一个整数的平方&#xff1b;换句话说&#xff0c;其值等于一个整数自乘的…...

深入CSS 布局——WEB开发系列29

CSS 页面布局技术允许我们拾取网页中的元素&#xff0c;并且控制它们相对正常布局流、周边元素、父容器或者主视口/窗口的位置。 一、正常布局流&#xff08;Normal Flow&#xff09; CSS的布局基础是“正常流”&#xff0c;也就是页面元素在没有特别指定布局方式时的默认排列…...

视频的容器格式和编码格式详解

视频的容器格式和编码格式是视频文件的两个核心概念&#xff0c;它们相互关联但具有不同的功能。以下是详细的解释&#xff1a; 1. 容器格式 (Container Format) 容器格式&#xff0c;又称封装格式&#xff0c;指的是视频文件的外壳或容器&#xff0c;它用于封装视频、音频、…...

Elasticsearch Mapping 详解

1 概述 映射的基本概念 Mapping 也称之为映射&#xff0c;定义了 ES 的索引结构、字段类型、分词器等属性&#xff0c;是索引必不可少的组成部分。 ES 中的 mapping 有点类似与DB中“表结构”的概念&#xff0c;在 MySQL 中&#xff0c;表结构里包含了字段名称&#xff0c;字…...

WPF 利用视觉树获取指定名称对象、指定类型对象、以及判断是否有验证错误

1.利用视觉树获取指定名称对象 /// <summary> /// Finds a Child of a given item in the visual tree. /// </summary> /// <param name"parent">A direct parent of the queried item.</param> /// <typeparam name"T">T…...

了解`re`模块的`split()`, `sub()`, `subn()`方法的作用

在Python中&#xff0c;re模块&#xff08;即正则表达式模块&#xff09;提供了强大的字符串处理能力&#xff0c;允许你通过模式匹配来执行复杂的文本搜索、替换和分割等操作。其中&#xff0c;split(), sub(), 和 subn() 方法是re模块中非常实用的几个函数&#xff0c;它们各…...

机器学习交通流量预测实现方案

机器学习交通流量预测实现方案 实现方案 1. 数据预处理 2. 模型选择 3. 模型训练与评估 代码实现 代码解释 小结 &#x1f388;边走、边悟&#x1f388;迟早会好 交通流量预测是机器学习在智能交通系统中的典型应用&#xff0c;通常用于预测道路上的车辆流量、速度和拥…...

QNN:基于QNN+example重构之后的yolov8det部署

QNN是高通发布的神经网络推理引擎&#xff0c;是SNPE的升级版&#xff0c;其主要功能是&#xff1a; 完成从Pytorch/TensorFlow/Keras/Onnx等神经网络框架到高通计算平台的模型转换&#xff1b; 完成模型的低比特量化&#xff08;int8&#xff09;&#xff0c;使其能够运行在高…...

Redis实战宝典:开发规范与最佳实践

目录标题 Key命名设计&#xff1a;可读性、可管理性、简介性Value设计&#xff1a;拒绝大key控制Key的生命周期&#xff1a;设定过期时间时间复杂度为O(n)的命令需要注意N的数量禁用命令&#xff1a;KEYS、FLUSHDB、FLUSHALL等不推荐使用事务删除大key设置合理的内存淘汰策略使…...

RPC的实现原理架构

RPC&#xff08;Remote Procedure Call&#xff0c;远程过程调用&#xff09;是一种允许程序调用位于不同地址空间或网络上的函数或方法的技术&#xff0c;尽管这些调用看起来像是本地调用。RPC 的实现极大地简化了分布式系统中的通信&#xff0c;避免了开发人员直接处理底层网…...

OpenXR Monado Hello_xr提交Frame

OpenXR Monado Hello_xr提交Frame @src/tests/hello_xr/openxr_program.cpp RenderFrame())xrWaitFrame(m_session, &frameWaitInfo, &frameState)xrBeginFrame(m_session, &frameBeginInfo)std::vector<XrCompositionLayerBaseHeader*> layers;std::vecto…...

huggingface快速下载模型及其配置

大家知道&#xff0c;每次进huggingface里面一个个手动下载文件然后再上传到我们的服务器是很麻烦的。其实huggingface提供了下载整个包的命令&#xff0c;很简单&#xff0c;如下&#xff1a; 1. 进入huggingface官网&#xff0c;随便搜索一个模型&#xff0c;点击右上角的三…...

虚幻5|不同骨骼受到不同伤害|小知识(2)

1.蓝图创建一个结构&#xff0c;B_BoneDamage 结构里添加一个浮点变量&#xff0c;表示伤害倍数 2.当我们创建了一个结构&#xff0c;就需要创建一个数据表格&#xff0c;数据表格可以选择对应的结构 不同骨骼不同倍数伤害&#xff0c;骨骼要对应骨骼网格体的名称 3.把我们br…...

达梦SQL 优化简介

目录 一、定位慢 SQL &#xff08;一&#xff09;开启跟踪日志记录 1.跟踪日志记录配置 &#xff08;二&#xff09;通过系统视图查看 1.SQL 记录配置 2.查询方式 二、SQL分析方法 &#xff08;一&#xff09;执行计划 1.概述 2.查看执行计划 &#xff08;二&#x…...

synchronized 学习

学习源&#xff1a; https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖&#xff0c;也要考虑性能问题&#xff08;场景&#xff09; 2.常见面试问题&#xff1a; sync出…...

盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来

一、破局&#xff1a;PCB行业的时代之问 在数字经济蓬勃发展的浪潮中&#xff0c;PCB&#xff08;印制电路板&#xff09;作为 “电子产品之母”&#xff0c;其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透&#xff0c;PCB行业面临着前所未有的挑战与机遇。产品迭代…...

在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:

在 HarmonyOS 应用开发中&#xff0c;手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力&#xff0c;既支持点击、长按、拖拽等基础单一手势的精细控制&#xff0c;也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档&#xff0c…...

【解密LSTM、GRU如何解决传统RNN梯度消失问题】

解密LSTM与GRU&#xff1a;如何让RNN变得更聪明&#xff1f; 在深度学习的世界里&#xff0c;循环神经网络&#xff08;RNN&#xff09;以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而&#xff0c;传统RNN存在的一个严重问题——梯度消失&#…...

Golang dig框架与GraphQL的完美结合

将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用&#xff0c;可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器&#xff0c;能够帮助开发者更好地管理复杂的依赖关系&#xff0c;而 GraphQL 则是一种用于 API 的查询语言&#xff0c;能够提…...

Frozen-Flask :将 Flask 应用“冻结”为静态文件

Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是&#xff1a;将一个 Flask Web 应用生成成纯静态 HTML 文件&#xff0c;从而可以部署到静态网站托管服务上&#xff0c;如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...

Linux云原生安全:零信任架构与机密计算

Linux云原生安全&#xff1a;零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言&#xff1a;云原生安全的范式革命 随着云原生技术的普及&#xff0c;安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测&#xff0c;到2025年&#xff0c;零信任架构将成为超…...

Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!

一、引言 在数据驱动的背景下&#xff0c;知识图谱凭借其高效的信息组织能力&#xff0c;正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合&#xff0c;探讨知识图谱开发的实现细节&#xff0c;帮助读者掌握该技术栈在实际项目中的落地方法。 …...

实现弹窗随键盘上移居中

实现弹窗随键盘上移的核心思路 在Android中&#xff0c;可以通过监听键盘的显示和隐藏事件&#xff0c;动态调整弹窗的位置。关键点在于获取键盘高度&#xff0c;并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...

浅谈不同二分算法的查找情况

二分算法原理比较简单&#xff0c;但是实际的算法模板却有很多&#xff0c;这一切都源于二分查找问题中的复杂情况和二分算法的边界处理&#xff0c;以下是博主对一些二分算法查找的情况分析。 需要说明的是&#xff0c;以下二分算法都是基于有序序列为升序有序的情况&#xf…...