【知识图谱】4、LLM大模型结合neo4j图数据库实现AI问答的功能
昨天写了一篇文章,使用fastapi直接操作neo4j图数据库插入数据的例子, 本文实现LLM大模型结合neo4j图数据库实现AI问答功能。
废话不多说,先上代码
import gradio as gr
from fastapi import FastAPI, HTTPException, Request
from pydantic import BaseModel
from langchain_openai import ChatOpenAI
from langchain.prompts import (ChatPromptTemplate,MessagesPlaceholder,SystemMessagePromptTemplate,HumanMessagePromptTemplate,
)
from langchain.chains import LLMChain
from langchain.memory import ConversationBufferMemory
from langchain_community.graphs import Neo4jGraph
from langchain.chains import GraphCypherQAChain
import asyncio
from typing import List
import json# Initialize FastAPI
app = FastAPI()# Initialize Neo4j with timeout
try:graph = Neo4jGraph(url="bolt://localhost:7687",username="neo4j",password="password",database="neo4j",timeout=60 # 60 seconds timeout)
except Exception as e:print(f"Failed to connect to Neo4j: {e}")graph = None# Fallback in-memory storage
job_seekers = []
job_positions = []# Initialize LangChain components
llm = ChatOpenAI(temperature=0.95,model="glm-4-flash",openai_api_key="xxxxxx",openai_api_base="https://open.bigmodel.cn/api/paas/v4/"
)prompt = ChatPromptTemplate(messages=[SystemMessagePromptTemplate.from_template("You are a helpful AI assistant for a recruitment company. You can answer questions about job seekers and available positions."),MessagesPlaceholder(variable_name="chat_history"),HumanMessagePromptTemplate.from_template("{question}")]
)memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
conversation = LLMChain(llm=llm,prompt=prompt,verbose=True,memory=memory
)# Initialize GraphCypherQAChain if Neo4j is available
if graph:graph_qa = GraphCypherQAChain.from_llm(llm,graph=graph,verbose=True)# Define chat function with timeout
async def chat_with_timeout(message, history):try:if graph:neo4j_response = await asyncio.wait_for(asyncio.to_thread(graph_qa.run, message),timeout=10.0 # 10 seconds timeout)return f"Based on our database: {neo4j_response}"else:# Fallback to in-memory dataif "job seekers" in message.lower():return f"Based on our records: We have {len(job_seekers)} job seekers."elif "job positions" in message.lower():return f"Based on our records: We have {len(job_positions)} job positions."else:response = conversation.invoke({"question": message})return response['text']except asyncio.TimeoutError:return "I'm sorry, but the database query took too long. Please try a simpler question or try again later."except Exception as e:print(f"Error in chat function: {e}")response = conversation.invoke({"question": message})return response['text']# # Create Gradio interface
iface = gr.ChatInterface(chat_with_timeout)
#
# # Mount Gradio app to FastAPI
app = gr.mount_gradio_app(app, iface, path="/")# Run the app
if __name__ == "__main__":import uvicornuvicorn.run(app, host="0.0.0.0", port=8000)
还是老规矩,先AI解释下,构建一个基于FastAPI和Gradio的聊天应用,主要功能如下:
1、初始化FastAPI应用和Neo4j图数据库连接(带超时处理);
2、定义了用于对话的LangChain组件,包括LLM模型、提示模板及对话记忆;
3、根据Neo4j是否可用初始化图查询链;
4、实现异步聊天函数,支持数据库查询数据检索,并处理超时错误;
5、使用Gradio创建用户界面并将应用挂载到FastAPI上。
核心关注graph_qa.run方法,执行原理:
- 自然语言处理:
当调用 graph_qa.run(message) 时,首先会将用户的自然语言查询(message)传递给大语言模型(LLM)。
- Cypher 查询生成:
LLM 分析用户的查询,并尝试将其转换为 Cypher 查询语言。Cypher 是 Neo4j 图数据库使用的查询语言。这个步骤涉及到理解用户意图和将其映射到图数据库的结构上。
- 数据库查询:
生成的 Cypher 查询被发送到 Neo4j 数据库执行。这个过程涉及到遍历图数据库,匹配节点和关系,并检索相关数据。
- 结果解释:
数据库返回查询结果后,这些结果会被传回给 LLM。LLM 会分析这些原始数据,理解其含义和上下文。
- 响应生成:
最后,LLM 会根据原始查询和数据库返回的结果,生成一个人类可读的响应。这个响应应该直接回答用户的问题,并可能包含从数据库中提取的具体信息。
在上一篇文章中,我已经在neo4j插入了一些数据,比如张三1的技能。 这里问一下

原文链接: 【知识图谱】4、LLM大模型结合neo4j图数据库实现AI问答的功能

相关文章:
【知识图谱】4、LLM大模型结合neo4j图数据库实现AI问答的功能
昨天写了一篇文章,使用fastapi直接操作neo4j图数据库插入数据的例子, 本文实现LLM大模型结合neo4j图数据库实现AI问答功能。 废话不多说,先上代码 import gradio as gr from fastapi import FastAPI, HTTPException, Request from pydantic…...
《信息技术 云计算 边缘云通用技术要求》国家标准发布,九州未来参编
日前,2024年第17号国家标准公告发布,由全国信标委云计算标准工作组组织制定、九州未来作为行业专家单位参编的《信息技术 云计算 边缘云通用技术要求》国家标准正式获批发布。 边缘云作为云计算技术的有效补充和拓展,能够实现将云计算能力拓展…...
NTFS硬盘支持工具Paragon NTFS for Mac 15.4.44 中文破解版
Paragon NTFS for Mac 15.4.44 中文破解版是一个底层的文件系统驱动程序,专门开发用来弥合Windows和Mac OS X之间的不兼容性,通过在Mac OS X系统下提供对任何版本的NTFS文件系统完全的读写访问服务来弥合这种不兼容性。为您轻松解决Mac不能识别Windows NTFS文件难题…...
66-java 类型擦除
类型擦除是Java类型信息在运行时的一个特性,它发生在泛型类型被擦除成它们的原始类型后,以及在运行时,由于类型擦除,泛型信息不可用。 例如,以下两个泛型类型: List<String> list1 new ArrayList&…...
25考研人数预计下降?这一届考研有哪些新趋势?
2025年考研时间线: 2024年9月:公共课及各院校考试大纲公布; 2024年9月下旬:预报名; 2024年10月:正式报名; 2024年11月:线上/线下确认; 2024年12月中下旬:…...
比尔·盖茨对AI充满信心
The Verge与比尔盖茨进行了关于AI、错误信息和气候变化的对话。 比尔盖茨花费数十亿美元资助他认为将塑造未来的技术——从应对气候变化到消灭疾病。 盖茨在一部新的Netflix系列片《未来之路:比尔盖茨的境界》中深入探讨了这些话题。该系列于9月18日首播ÿ…...
Selenium 实现图片验证码识别
前言 在测试过程中,有的时候登录需要输入图片验证码。这时候使用Selenium进行自动化测试,怎么做图片验证码识别?本篇内容主要介绍使用Selenium、BufferedImage、Tesseract进行图片 验证码识别。 环境准备 jdk:1.8 tessdata&…...
基于云原生向量数据库 PieCloudVector 的 RAG 实践
近年来,人工智能生成内容(AIGC)已然成为最热门的话题之一。工业界出现了各种内容生成工具,能够跨多种模态产生多样化的内容。这些主流的模型能够取得卓越表现,归功于创新的算法、模型规模的大幅扩展,以及海…...
内存泄漏的影响
(1)内存泄漏是什么? 内存泄漏是指程序运行过程中分配的内存没有被正确释放,导致这部分内存无法再次使用,从而造成内存资源的浪费。内存泄漏可能会导致系统性能下降、程序崩溃或者消耗过多的系统资源;内存泄漏通常发生在动态分配的…...
shell变量扩展你知道多少?
1. shell变量扩展 我们知道,${var}的形式可以获取变量var的值,但其实还可以有更多花式玩法。其中~表示用户根目录其实属于 波浪线扩展,这比较常见,不展开介绍了。 下面的每种情况中,word 都要经过波浪线扩…...
Compose中对于KeyEvent的处理
在开发Android TV时,遇到了一个需求,需要对遥控器发出的上下左右按键点击事件做处理。此处我们可以在Modifier.onKeyEvent中对按键事件做处理。此处我写了一个按钮的modifier模板如下。 private val buttonModifier Modifier.onKeyEvent {when {KeyEve…...
OpenXR Monado compositor处理应用layers(cheduled->delivered)
OpenXR Monado compositor处理应用的layer,scheduled->delivered @src/xrt/targets/common/target_instance.c t_instance_create_system @src/xrt/compositor/main/comp_compositor.ccomp_main_create_system_compositor@src/xrt/compositor/multi/comp_multi_system…...
leetcode:1137 Tribonacci 数列
1137 Tribonacci 数列 题目链接https://leetcode.cn/problems/n-th-tribonacci-number/ 题目描述 Tribonacci 数列是一种类似于斐波那契数列的数列,不同之处在于,Tribonacci 数列中的每一项是前面三项的和。给定整数 n,求出 Tribonacci 数…...
简单讲一下API的作用以及介绍
API全称Application Programming Interface,即应用程序编程接口,是一些预先定义的函数,或指软件系统不同组成部分衔接的约定,用于传输数据和指令,使应用程序之间可以集成和共享数据资源。 API 接口简介 一、基本概念…...
猎板道出PCB免费打样真相:制造成本究竟给了谁?
猎板PCB作为电路板特殊定制的厂家,曾经推出了PCB免费打样活动以吸引新客户。从经营的角度来看,免费打样的成本实际上最终由稳定客户承担。免费打样的客户往往仅在有免费机会时下单,而稳定的合作客户则为这些促销活动买单。这种模式长期下来可…...
Linux 竞争与并发(学习总结)
在Linux驱动开发中,“并发”和“竞争”是两个重要的概念,它们涉及到多任务环境下资源的管理和使用。 并发 (Concurrency) 并发指的是在同一时间段内,多个任务看似同时运行的现象。实际上,在单核处理器上,这通常是通过…...
SaaS初创企业需求建模指南
所以你已经准备好进入市场,你有宏大的目标,并且充满激情。 但等等。 你要如何 实现 这些目标呢? 你设置了 正确的 目标吗? 而且你的目标是 可实现的吗? 那么,如何回答这些问题呢? 进入需求…...
MySQL最左匹配原则
MySQL索引的加左原则,也被称为最左匹配原则(Leftmost Prefix Rule)或最左前缀规则(Leftmost Prefixes),是指在创建复合索引时,应将经常用于查询的列放在索引的最左边,以便MySQL能够更…...
日常开发1:居中处理
开发的时候总会遇到两个空间上下两层,然后居中排放,如果只是知道下方或者上方控件的具体位置点,但是不知道另外一个控件的集体点位,应该怎么处理呢? 如上图所示,知道imageview 下方中间的点的位置(这里暂时定义image的宽高已知),上方是textview,那么如何布局呢? 简单解决方法…...
css弹性盒子——flex布局
目录 编辑 一、flex容器的样式属性(父元素属性) display:flex 弹性盒子,实现水平排列,在父盒子设置,适用于单行/单列 justify-content 二、flex元素的样式属性(子元素属性) 1.flex-grow 2.flex-shrink 3.flex-basis 4.flex组合属性 flex:flex-…...
网络编程(Modbus进阶)
思维导图 Modbus RTU(先学一点理论) 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议,由 Modicon 公司(现施耐德电气)于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...
手游刚开服就被攻击怎么办?如何防御DDoS?
开服初期是手游最脆弱的阶段,极易成为DDoS攻击的目标。一旦遭遇攻击,可能导致服务器瘫痪、玩家流失,甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案,帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...
突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能
下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能,包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...
2025年能源电力系统与流体力学国际会议 (EPSFD 2025)
2025年能源电力系统与流体力学国际会议(EPSFD 2025)将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会,EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...
【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)
可以使用Sqliteviz这个网站免费编写sql语句,它能够让用户直接在浏览器内练习SQL的语法,不需要安装任何软件。 链接如下: sqliteviz 注意: 在转写SQL语法时,关键字之间有一个特定的顺序,这个顺序会影响到…...
sqlserver 根据指定字符 解析拼接字符串
DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...
vue3 定时器-定义全局方法 vue+ts
1.创建ts文件 路径:src/utils/timer.ts 完整代码: import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...
从零实现STL哈希容器:unordered_map/unordered_set封装详解
本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说,直接开始吧! 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...
全志A40i android7.1 调试信息打印串口由uart0改为uart3
一,概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本:2014.07; Kernel版本:Linux-3.10; 二,Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01),并让boo…...
