当前位置: 首页 > news >正文

视觉语言模型(VLMs)知多少?

最近这几年,自然语言处理和计算机视觉这两大领域真是突飞猛进,让机器不仅能看懂文字,还能理解图片。这两个领域的结合,催生了视觉语言模型,也就是Vision language models (VLMs) ,它们能同时处理视觉信息和文字数据。

图片

VLMs就像是AI界的新宠,能搞定那些既需要看图又需要读文的活儿,比如给图片配文字、回答有关图片的问题,或者根据文字描述生成图片。以前这些活儿都得靠不同的系统来干,但现在VLMs提供了一个统一的解决方案。咱们得好好研究研究这些视觉语言模型。

那视觉语言模型到底是啥?

简单来说,视觉语言模型就是把计算机视觉自然语言处理这两大技术合二为一。

计算机视觉就是让机器能看懂图像和视频里的东西,比如认出里面有什么物体、图案之类的。

自然语言处理呢,就是让机器能理解和生成人类的语言,这样机器就能读得懂、分析得了,还能自己写东西。

VLMs就是通过构建一种能同时处理视觉和文本输入的模型,把这两个领域给连接起来了。这背后靠的是深度学习的一些高级架构,尤其是那些变换器(Transformer)模型,它们在像GPT-4o、Llama、Gemini和Gemma这样的大型语言模型中发挥了关键作用。

这些基于变换器的架构被调整来处理多种类型的输入,让VLMs能捕捉到视觉信息和语言数据之间那些复杂的联系。

VLMs到底是怎么个工作法?

你记得那个为了处理自然语言而搞出来的变换器模型吗?就是那个能处理长距离的依赖关系,还能抓住数据里上下文联系的厉害玩意儿。这个模型现在已经成了很多高级AI系统的中坚力量。

这个变换器架构,最早是在2017年的一篇论文《Attention is All You Need》( https://arxiv.org/abs/1706.03762 )里提出来的。

图片

Transformer网络架构

在VLMs的世界里,变换器被调整成了能同时处理图像和文本,让这两种不同类型的信息能够无缝地整合在一起。想要更详细了解 Transformer 的话,可以参见之前的文章:《Transformer架构的详解》及《用PyTorch构建Transformer模型实战》

一般来说,一个典型的VLM架构包括两个主要的部分:图像编码器文本解码器

  • 图像编码器:这家伙的职责是处理视觉数据,比如图片,然后提取出里面的关键特征,比如物体、颜色、纹理等等,把它们转换成模型能懂的格式。

  • 文本解码器:这个部件负责处理文本数据,根据图像编码器提供的视觉特征来生成输出。

图片

Encoder-Decoder 功能

这两个部件在VLM里头就像是多模态融合的大管家。

通过把这两部分结合起来,VLMs能干的事儿可多了,比如能给图片写出详细的描述,回答有关图片的问题,甚至根据文字描述生成全新的图片呢!VLMs工作的过程大概是这样的:

  1. 图像分析:图像编码器先检查图片,然后生成一个代码,这个代码代表了图片的关键视觉特征。

  2. 信息结合:文本解码器拿到这个代码后,会把它和任何文本输入(比如一个问题)结合起来,一起处理。

  3. 生成输出:文本解码器用这种结合后的理解来生成一个回应,比如给图片配上字幕,或者回答问题。

大多数VLMs用的是视觉变换器(Vision Transformer, ViT)作为图像编码器,这个编码器已经在大量的图像数据集上预训练过,确保它能有效地捕捉到多模态任务需要的视觉特征。

文本解码器则是基于语言模型,经过微调后能处理视觉数据上下文中的语言生成的复杂性。这种视觉和语言处理能力的高度结合,让VLMs成为了一种非常通用而且强大的模型。

开发VLMs的一个重大挑战就是要有大型而且多样化的数据集,里面得包含视觉和文本信息。这些数据集对于训练模型理解和生成多模态内容非常关键。

训练VLMs的过程,就是把图像和它们相应的文本描述成对地输入到模型里,让模型学会视觉元素和语言表达之间的复杂关系。

为了处理这些数据,VLMs通常会用到嵌入层,把视觉和文本输入都转换成高维空间里的表示,这样它们就可以在那里被比较和结合起来。

这种嵌入过程让模型能够理解两种模态之间的联系,并且生成既连贯又符合上下文的输出。想要了解更多关于嵌入的细节,可以参见 《大话LLM之向量嵌入》 及 《LLM向量嵌入知多少》两篇文章。

那现在有哪些比较主流的开源的视觉语言模型?

这个领域可真是海了去了,Hugging Face Hub上就有不少现成的开源模型。这些模型大小不一,功能各异,许可证也各不相同,给不同需求的用户提供了丰富的选择。下面咱们就来看看一些特别出色的开源VLMs,以及它们的关键特点:

图片

最新的VLMs及其关键特点

要找到最适合自己特定需求的VLMs,面对这么多选项确实有点难。不过,有几个工具和资源能帮上忙:

  1. Vision Arena:这是一个动态排行榜,基于模型输出的匿名投票。用户上传一张图片和一个提示,然后系统会从两个不同的模型中随机抽取输出,让用户选择他们更喜欢哪个。这个排行榜完全是基于人的喜好来构建的,给模型提供了一个公平的排名。

  2. Open VLM Leaderboard:这个排行榜会根据不同的指标和平均分数给各种VLMs打分,还提供了筛选器,可以按照模型的大小、许可证和不同指标的性能来排序。

  3. VLMEvalKit:这是一个工具包,专门设计用来在VLMs上运行基准测试,也是Open VLM Leaderboard的技术支持。还有一个评估套件叫LMMS-Eval,它提供了一个命令行界面,让用户可以使用Hugging Face Hub上托管的数据集来评估模型。

虽然Vision Arena和Open VLM Leaderboard提供了很多有价值的信息,但它们只能包括那些已经被提交的模型,而且需要定期更新,才能加入新模型。

我们怎么评估这些视觉语言模型?

通常得用到几种专门的基准测试,下面简要介绍几种,详情可参见:《大型语言模型基准测试:理解语言模型性能》:

  1. MMMU:这个大规模多学科多模态理解和推理的基准测试,覆盖了超过11,500个多模态的挑战,需要用到像艺术和工程这样的不同学科的大学水平知识。

  2. MMBench:这个基准测试包含了20种不同技能的3000个单选题,比如光学字符识别(OCR)和目标定位。它用CircularEval策略,就是把答案选项随机打乱,模型得一直能选出正确答案。

  3. 特定领域的基准测试:还有一些更专业的基准测试,比如MathVista(视觉数学推理)、AI2D(图表理解)、ScienceQA(科学问题回答)和OCRBench(文档理解),这些都能提供更专门的评估。

这些测试帮研究人员和开发者评估和比较不同VLMs的性能,让他们能更好地理解模型在特定任务和场景下的效果。通过这些测试,我们能更精确地知道模型处理多模态数据、理解复杂概念和生成准确响应的能力。

技术细节:预训练VLMs

预训练VLMs就是要把图像和文本的信息统一起来,然后输入到文本解码器里生成文本。这通常包括一个图像编码器、一个用来对齐图像和文本信息的嵌入投影器,还有一个文本解码器。不过,不同的模型可能会用不同的预训练策略。

很多时候,如果你能针对特定用途微调现有的模型,可能连预训练VLMs都不需要。像Transformers和SFTTrainer这样的工具,让微调模型变得简单,即使是资源有限的人也能轻松上手。

实现开源VLMs

下面是一个用HuggingFace的Transformers库,我们可以在自己的电脑上免费使用开源VLM LlavaNext模型:

from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration
import torch
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf"
)
model = LlavaNextForConditionalGeneration.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf",torch_dtype=torch.float16,low_cpu_mem_usage=True
)
model.to(device)

这样,我们就能在自己的项目中用上这些强大的开源VLMs了。

VLMs 有哪些应用场景? 

VLMs 本事可不止是给图片加个字幕那么简单。这些模型就像是视觉和文本信息之间的超级翻译官,开启了一大堆应用的大门。咱们一块儿看看VLMs在各行各业里头都有哪些影响力大的应用。

  1. 视觉问题回答(Visual Question Answering, VQA)

    想象一下,你给机器看张图,然后问它问题,比如“这图里最高的楼是什么颜色的?”或者“这图里有几个人?”VQA就是干这个的。这要求模型得能读懂图里的视觉信息,还得理解你问话的上下文。在医疗行业,VQA能帮忙分析医学影像,给诊断和治疗计划提供参考。在零售业,它能让顾客更直观地和商品图片互动,提升购物体验。

  2. 文本到图像生成

    VLMs还有一个超酷的能力,就是能根据文字描述生成图片。比如你描述一个“山间宁静的日落,山谷中流淌着一条河流”,VLMs就能给你“画”出来。这对设计师和广告人来说是个宝,他们可以根据文字提示快速搞出视觉创意,让创造视觉内容的过程更高效。

  3. 图像检索

    图像检索就是根据文字描述来找图片。VLMs能搞懂图片里有啥,也能搞懂你想找啥,帮你找到最匹配的图片。这能让搜索引擎更精准,让用户更容易找到他们想要的图片。无论是在网上购物还是医学图像分析,这个技能都很有用。

  4. 视频理解

    VLMs不只能处理图片,还能处理视频,帮我们理解视频内容,甚至给视频加字幕。视频理解能分析视频里的视觉信息,然后生成描述性的文本,捕捉视频要表达的精髓。这个技能在视频搜索、视频摘要和内容审核等方面都能派上用场。比如,它能帮助用户根据文字找到特定的视频片段,或者快速生成视频摘要,让用户迅速了解视频内容。在内容审核方面,VLMs能帮忙识别视频中的不当内容,让网络平台更安全友好。

总之,视觉语言模型能同时处理视觉和文本数据,这本事让各种应用都有可能得到加强。随着这个领域的不断发展,我们可以预见,未来会有更多更复杂的VLMs出现,它们能完成更艰巨的任务,还能给出有价值的见解。

相关文章:

视觉语言模型(VLMs)知多少?

最近这几年,自然语言处理和计算机视觉这两大领域真是突飞猛进,让机器不仅能看懂文字,还能理解图片。这两个领域的结合,催生了视觉语言模型,也就是Vision language models (VLMs) ,它们能同时处理视觉信息和…...

重新修改 Qt 项目的 Kit 配置

要重新修改 Qt 项目的 Kit 配置,你可以按照以下步骤进行操作: 1. 打开 Qt Creator 首先,启动 Qt Creator,确保你的项目已经打开。 2. 进入项目设置 在 Qt Creator 中,点击菜单栏的 “Projects” 标签(通…...

【Spring Boot 3】【Web】自定义响应状态码

【Spring Boot 3】【Web】自定义响应状态码 背景介绍开发环境开发步骤及源码工程目录结构背景 软件开发是一门实践性科学,对大多数人来说,学习一种新技术不是一开始就去深究其原理,而是先从做出一个可工作的DEMO入手。但在我个人学习和工作经历中,每次学习新技术总是要花费…...

Locksupport凭证的底层原理

LockSupport的凭证(通常称为“许可”或“permit”)的底层原理主要涉及到Java的Unsafe类以及系统级的线程同步机制。LockSupport是Java 6(JSR166-JUC)引入的一个类,提供了基本的线程同步原语,其核心功能是通…...

Elasticsearch 再次开源

作者:来自 Elastic Shay Banon [D.N.A] Elasticsearch 和 Kibana 可以再次被称为开源了。很难表达这句话让我有多高兴。我真的激动得跳了起来。Elastic 的所有人都是这样的。开源已经融入我的 DNA,也融入了 Elastic 的 DNA。能够再次将 Elasticsearch 称…...

对称密码学

1. 使用OpenSSL 命令行 在 Ubuntu Linux Distribution (发行版)中, OpenSSL 通常可用。当然,如果不可用的话,也可以使用下以下命令安装 OpenSSL: $ sudo apt-get install openssl 安装完后可以使用以下命令检查 OpenSSL 版本&am…...

正则表达式优化建议

文章目录 优化正则表达式代码示例:注意事项: 一些常见的正则表达式陷阱 优化正则表达式是提高文本处理效率和准确性的重要步骤。以下是一些优化正则表达式的方法: 以下是整理归纳后的正则表达式优化技巧: 优化正则表达式 一、预…...

Oracle RAC关于多节点访问同一个数据的过程

一、说明 Oracle RAC 存在多个计算节点,但是使用的共享存储。那么多个节点共同访问同一个资源,怎么保证一致性。 白文的逻辑理解简述: 用户1访问rac1 ,通过rac1获取AA数据块后,会加上latch锁。用户2通过rac2访问AA数据…...

IPC$漏洞多位密码爆破方法

虽然不应该将其用于非法的密码破解行为,但从代码修改角度来说,如果要破解多位密码(比如 n 位),你可以按照以下方式调整: 破解多位纯数字密码 如果你想破解 6 位纯数字密码: FOR /L %%i IN (100000,1,999999) DO (net use \\target - ip\ipc$ /user:weak %%i &&…...

计算机网络(八股文)

这里写目录标题 计算机网络一、网络分层模型1. TCP/IP四层架构和OSI七层架构⭐️⭐️⭐️⭐️⭐️2. 为什么网络要分层?⭐️⭐️⭐️3. 各层都有那些协议?⭐️⭐️⭐️⭐️ 二、HTTP【重要】1. http状态码?⭐️⭐️⭐️2. 从输入URL到页面展示…...

Docker打包镜像

Docker打包镜像 前置工作 1.虚拟机中配置好docker环境,并导入nginx,mysql,jdk的镜像 2.下载docker for windows 用idea打包镜像和创建容器需要这个东西支持 下载安装包后执行,无脑回车即可 3.idea中配置docker连接 完成配置后&…...

RabbitMQ 基础架构流程 数据隔离 创建用户

介绍 publisher:消息发送者-exchange:交换机,复制路由的消息-queue:队列,存储消息consumer:消息的消费者 工作流程 publisher消息发送者 -> exchange 交换机 -> queue 队列 -> consumer 消息的消…...

win10系统下openssl证书生成和单向认证

文章目录 前言一、安装openssl二、创建证书目录和必要文件1、创建sslcertTest文件夹2、创建openssl.cnf文件3、创建必要文件 三、创建密钥和证书1、创建根证书私钥ca.key2、创建根证书请求文件ca.csr3、创建自签根证书ca.crt4、创建服务端私钥server.key5、创建服务端证书请求文…...

动态规划的解题思想

1. 从斐波那契数列说起 斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始, ,后面的每一项数字都是前面两项数字的和。也就是: F(0) 0, F(2) 1 F(n) F&…...

OpenCV结构分析与形状描述符(10)检测并提取轮廓函数findContours()的使用

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 在二值图像中查找轮廓。 该函数使用算法 253从二值图像中检索轮廓。轮廓是有用的工具,可用于形状分析和对象检测与识别。参见 OpenC…...

HBase 源码阅读(二)

衔接 在上一篇文章中,HMasterCommandLine类中在startMaster();方法中 // 这里除了启动HMaster之外,还启动一个HRegionServerLocalHBaseCluster cluster new LocalHBaseCluster(conf, mastersCount, regionServersCount,LocalHMaster.class, HRegionSer…...

深度学习每周学习总结N9:transformer复现

🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 | 接辅导、项目定制 目录 多头注意力机制前馈传播位置编码编码层解码层Transformer模型构建使用示例 本文为TR3学习打卡,为了保证记录顺序我这里写…...

数据结构与算法(3)栈和队列

1.前言 哈喽大家好啊,今天博主继续为大家带来数据结构与算法的学习笔记,今天是关于栈和队列,未来博主会将上一章《顺序表与链表》以及本章《栈与队列》做专门的习题应用专题讲解,都会很有内容含量 ,欢迎大家多多支持&…...

11、Django Admin启用对计算字段的过滤

重新定义admin.py中的Hero管理模型如下: admin.register(Hero) class HeroAdmin(admin.ModelAdmin):list_display ("name", "is_immortal", "category", "origin", "is_very_benevolent")list_filter ("…...

xxl-job升级到springboot3.0 导致页面打不开报错)问题

原因:springboot3.0 因为移除了jsp 导致xxl-job不能访问,解决方法如下 1、修改PermissionInterceptor拦截器 package com.xxl.job.admin.controller.interceptor;import com.xxl.job.admin.controller.annotation.PermissionLimit; import com.xxl.job.…...

大数据学习栈记——Neo4j的安装与使用

本文介绍图数据库Neofj的安装与使用,操作系统:Ubuntu24.04,Neofj版本:2025.04.0。 Apt安装 Neofj可以进行官网安装:Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...

【杂谈】-递归进化:人工智能的自我改进与监管挑战

递归进化:人工智能的自我改进与监管挑战 文章目录 递归进化:人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管?3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...

【kafka】Golang实现分布式Masscan任务调度系统

要求: 输出两个程序,一个命令行程序(命令行参数用flag)和一个服务端程序。 命令行程序支持通过命令行参数配置下发IP或IP段、端口、扫描带宽,然后将消息推送到kafka里面。 服务端程序: 从kafka消费者接收…...

Xshell远程连接Kali(默认 | 私钥)Note版

前言:xshell远程连接,私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...

java 实现excel文件转pdf | 无水印 | 无限制

文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...

【大模型RAG】Docker 一键部署 Milvus 完整攻略

本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装;只需暴露 19530(gRPC)与 9091(HTTP/WebUI)两个端口,即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...

第25节 Node.js 断言测试

Node.js的assert模块主要用于编写程序的单元测试时使用,通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试,通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...

SAP学习笔记 - 开发26 - 前端Fiori开发 OData V2 和 V4 的差异 (Deepseek整理)

上一章用到了V2 的概念,其实 Fiori当中还有 V4,咱们这一章来总结一下 V2 和 V4。 SAP学习笔记 - 开发25 - 前端Fiori开发 Remote OData Service(使用远端Odata服务),代理中间件(ui5-middleware-simpleproxy)-CSDN博客…...

sipsak:SIP瑞士军刀!全参数详细教程!Kali Linux教程!

简介 sipsak 是一个面向会话初始协议 (SIP) 应用程序开发人员和管理员的小型命令行工具。它可以用于对 SIP 应用程序和设备进行一些简单的测试。 sipsak 是一款 SIP 压力和诊断实用程序。它通过 sip-uri 向服务器发送 SIP 请求,并检查收到的响应。它以以下模式之一…...

Mysql中select查询语句的执行过程

目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析(Parser) 2.4、执行sql 1. 预处理(Preprocessor) 2. 查询优化器(Optimizer) 3. 执行器…...