当前位置: 首页 > news >正文

python数值误差

最近在用fenics框架跑有限元代码,其中有一个部分是把在矩阵里定义的初始值,赋值到有限元空间里,这就涉及到了初始矩阵和有限元空间坐标的转化,部分代码如下

for i in range(len(dof_coordinates)):#     x, y = dof_coordinates[i]#原本的区间是0到physical_length的,根据num_grids_per_axis长度进行缩放.# ix, iy = min(int(x / physical_length * (num_grids_per_axis - 1)), num_grids_per_axis - 1), min(int(y / physical_length * (num_grids_per_axis - 1)), num_grids_per_axis - 1)ix, iy = min(int(x * (num_grids_per_axis - 1) / physical_length), num_grids_per_axis - 1), min(int(y * (num_grids_per_axis - 1) / physical_length), num_grids_per_axis - 1)

这里有一点需要注意:

x要先和num_grids_per_axis相乘,然后再除以physical_length。先除再乘的话,数学逻辑上一样,但是如果一个很小的数,除以一个很大的数,会有舍入误差。所以先乘再除。

相关文章:

python数值误差

最近在用fenics框架跑有限元代码,其中有一个部分是把在矩阵里定义的初始值,赋值到有限元空间里,这就涉及到了初始矩阵和有限元空间坐标的转化,部分代码如下 for i in range(len(dof_coordinates)):# x, y dof_coordinates[i…...

基于FPGA的OV5640摄像头图像采集

1.OV5640简介 OV5640是OV(OmniVision)公司推出的一款CMOS图像传感器,实际感光阵列为:2592 x 1944(即500w像素),该传感器内部集成了图像出炉的电路,包括自动曝光控制(AEC…...

CDN ❀ Http协议标准缓存字段梳理

文章目录 1. 背景介绍2. 测试环境搭建3. 缓存字段3.1 Expires3.2 Cache-Control3.3 协商缓存 1. 背景介绍 Http协议标准有RFC定义好的请求和响应头部字段用于进行缓存设置,本文主要进行介绍缓存功能相关的头部字段及其使用方法。在使用CDN功能是,协议标…...

浅谈NODE的NPM命令和合约测试开发工具HARDHAT

$ npm install yarn -g # 将模块yarn全局安装 $ npm install moduleName # 安装模块到项目目录下 默认跟加参数 --save 一样 会在package文件的dependencies节点写入依赖。 $ npm install -g moduleName # -g 的意思是将模块安装到全局,具体安装到磁盘哪个位置&…...

k8s-pod 实战六 (如何在不同的部署环境中调整startupprobe的参数?)

在不同的部署环境中(如开发、测试、生产环境),你可能希望对 startupProbe 的参数进行调整,以适应不同的需求和条件。以下是几种常见的方法和实践: 方法一:使用 Kustomize 1. 目录结构 假设你的项目目录结构如下: my-app/ ├── base/ │ └── deployment.yaml …...

和服务端系统的通信

首先web网站 前端浏览器 和 后端系统 是通过HTTP协议进行通信的 同步请求&异步请求: 同步请求:可以从浏览器中直接获取的(HTML/CSS/JS这样的静态文件资源),这种获取请求的http称为同步请求 异步请求:js代码需要到服…...

python 实现perfect square完全平方数算法

python 实现perfect square完全平方数算法介绍 完全平方数(Perfect Square)是一个整数,它可以表示为某个整数的平方。例如,1,4,9,16,25,… 都是完全平方数,因为 1 1 2 , 4 2 2 , 9 3 2 11^2,42^2,93^2 112,422,93…...

【漏洞复现】某客圈子社区小程序审计(0day)

0x00 前言 █ 纸上得来终觉浅,绝知此事要躬行 █ Fofa:"/static/index/js/jweixin-1.2.0.js"该程序使用ThinkPHP 6.0.12作为框架,所以直接审计控制器即可.其Thinkphp版本较高,SQL注入不太可能,所以直接寻找其他洞. 0x01 前台任意文件读取+SSRF 在 /app/api/c…...

信息安全数学基础(1)整除的概念

前言 在信息安全数学基础中,整除是一个基础且重要的概念。它涉及整数之间的特定关系,对于理解数论、密码学等领域至关重要。以下是对整除概念的详细阐述: 一、定义 设a, b是任意两个整数,其中b ≠ 0。如果存在一个整数q&#xff0…...

SearchGPT与谷歌:早期分析及用户反馈

光年AI系统,作为先进AI技术的成果,推出了一个AI驱动搜素引擎的原型,类似于SearchGPT。 该发布引起了广泛的关注,并引发了关于其是否有能力与Google竞争的讨论。 然而,早期的研究和用户反馈表明,虽然Searc…...

VUE饿了么UPload组件自定义上传

代码&#xff1a; 1.视图&#xff1a; <el-dialog :title"dialogTitle" width"30%" :visible.sync"dialogFormVisible" :destroy-on-close"true"><el-form ref"fileForm" class"items-align" ><e…...

2.1概率统计的世界

欢迎来到概率统计的世界&#xff01;在量化交易中&#xff0c;概率统计是至关重要的工具。通过理解概率&#xff0c;我们可以用数学的方法来描述市场行为&#xff0c;预测未来走势&#xff0c;并制定交易策略。让我们一起从基础概念开始&#xff0c;逐步深入&#xff0c;揭开概…...

SpringBoot使用QQ邮箱发送邮件

1.开启POP3/IMAP/SMTP/Exchange/CardDAV/CalDAV服务 设置 -> 账号 -> POP3/IMAP/SMTP/Exchange/CardDAV/CalDAV服务 获取授权码 SpringBoot依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter&l…...

使用 OpenCV 和 NumPy 进行图像处理:HSV 范围筛选实现PS抠图效果

使用 OpenCV 和 NumPy 进行图像处理&#xff1a;HSV 范围筛选实现PS抠图效果 在计算机视觉和图像处理领域&#xff0c;OpenCV 是一个非常强大的库&#xff0c;能够帮助我们执行各种图像操作。在这篇博客中&#xff0c;我们将通过一个简单的示例演示如何使用 OpenCV 和 NumPy 来…...

IIS中间件

中间件 中间件是一类软件&#xff0c;为应用程序、服务和组件提供一个通用的服务层。 主要功能 通信&#xff1a;提供通信框架&#xff0c;帮助不同系统与应用之间进行数据交换和通信 事务管理、资源管理 安全服务&#xff1a;提供认证、授权、加密等安全策略 数据访问&a…...

BMP280气压传感器详解(STM32)

目录 一、介绍 二、传感器原理 1.原理图 2.引脚描述 3.传感器数据获取流程 三、程序设计 main.c文件 bmp280.h文件 bmp280.c文件 四、实验效果 五、资料获取 项目分享 一、介绍 BMP280是一款基于博世公司APSM工艺的小封装低功耗数字复合传感器&#xff0c;它可以测…...

DWPD指标:为何不再适用于大容量SSD?

固态硬盘&#xff08;Solid State Drives, SSD&#xff09;作为计算机行业中最具革命性的技术之一&#xff0c;凭借其更快的读写速度、增强的耐用性和能效&#xff0c;已经成为大多数用户的首选存储方案。然而&#xff0c;如同任何其他技术一样&#xff0c;SSD也面临自身的挑战…...

路由器的固定ip地址是啥意思?固定ip地址有什么好处

‌在当今数字化时代&#xff0c;‌路由器作为连接互联网的重要设备&#xff0c;‌扮演着举足轻重的角色。‌其中&#xff0c;‌路由器的固定IP地址是一个常被提及但可能让人困惑的概念。‌下面跟着虎观代理小二一起将深入探讨路由器的固定IP地址的含义&#xff0c;‌揭示其背后…...

Java——踩坑Arrays.asList()

坑1&#xff1a;不能直接使用 Arrsys.asList() 来转换基本类型数据 public static void test1(){// 1、不能直接使用asList来转换基本类型数组int[] arr {1, 2, 3};List list Arrays.asList(arr);System.out.printf("list:%s size:%s class:%s", list, list.size(…...

前缀列表(ip-prefix)配置

一. 实验简介 本来前缀列表是要和访问控制列表放在一起讲的&#xff0c;但是这里单拎出来是为了更详细的讲解两者的区别 1.前缀列表针对IP比访问控制更加灵活。 2.前缀列表在后面被引用时是无法对数据包进行过滤的 实验拓扑 二. 实验目的 R4路由器中只引入子网LoopBack的…...

【位运算】消失的两个数字(hard)

消失的两个数字&#xff08;hard&#xff09; 题⽬描述&#xff1a;解法&#xff08;位运算&#xff09;&#xff1a;Java 算法代码&#xff1a;更简便代码 题⽬链接&#xff1a;⾯试题 17.19. 消失的两个数字 题⽬描述&#xff1a; 给定⼀个数组&#xff0c;包含从 1 到 N 所有…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)

笔记整理&#xff1a;刘治强&#xff0c;浙江大学硕士生&#xff0c;研究方向为知识图谱表示学习&#xff0c;大语言模型 论文链接&#xff1a;http://arxiv.org/abs/2407.16127 发表会议&#xff1a;ISWC 2024 1. 动机 传统的知识图谱补全&#xff08;KGC&#xff09;模型通过…...

【7色560页】职场可视化逻辑图高级数据分析PPT模版

7种色调职场工作汇报PPT&#xff0c;橙蓝、黑红、红蓝、蓝橙灰、浅蓝、浅绿、深蓝七种色调模版 【7色560页】职场可视化逻辑图高级数据分析PPT模版&#xff1a;职场可视化逻辑图分析PPT模版https://pan.quark.cn/s/78aeabbd92d1...

微服务通信安全:深入解析mTLS的原理与实践

&#x1f525;「炎码工坊」技术弹药已装填&#xff01; 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、引言&#xff1a;微服务时代的通信安全挑战 随着云原生和微服务架构的普及&#xff0c;服务间的通信安全成为系统设计的核心议题。传统的单体架构中&…...

【Linux】Linux安装并配置RabbitMQ

目录 1. 安装 Erlang 2. 安装 RabbitMQ 2.1.添加 RabbitMQ 仓库 2.2.安装 RabbitMQ 3.配置 3.1.启动和管理服务 4. 访问管理界面 5.安装问题 6.修改密码 7.修改端口 7.1.找到文件 7.2.修改文件 1. 安装 Erlang 由于 RabbitMQ 是用 Erlang 编写的&#xff0c;需要先安…...

【java面试】微服务篇

【java面试】微服务篇 一、总体框架二、Springcloud&#xff08;一&#xff09;Springcloud五大组件&#xff08;二&#xff09;服务注册和发现1、Eureka2、Nacos &#xff08;三&#xff09;负载均衡1、Ribbon负载均衡流程2、Ribbon负载均衡策略3、自定义负载均衡策略4、总结 …...

鸿蒙Navigation路由导航-基本使用介绍

1. Navigation介绍 Navigation组件是路由导航的根视图容器&#xff0c;一般作为Page页面的根容器使用&#xff0c;其内部默认包含了标题栏、内容区和工具栏&#xff0c;其中内容区默认首页显示导航内容&#xff08;Navigation的子组件&#xff09;或非首页显示&#xff08;Nav…...

HTML中各种标签的作用

一、HTML文件主要标签结构及说明 1. <&#xff01;DOCTYPE html> 作用&#xff1a;声明文档类型&#xff0c;告知浏览器这是 HTML5 文档。 必须&#xff1a;是。 2. <html lang“zh”>. </html> 作用&#xff1a;包裹整个网页内容&#xff0c;lang"z…...

职坐标物联网全栈开发全流程解析

物联网全栈开发涵盖从物理设备到上层应用的完整技术链路&#xff0c;其核心流程可归纳为四大模块&#xff1a;感知层数据采集、网络层协议交互、平台层资源管理及应用层功能实现。每个模块的技术选型与实现方式直接影响系统性能与扩展性&#xff0c;例如传感器选型需平衡精度与…...

中科院1区顶刊|IF14+:多组学MR联合单细胞时空分析,锁定心血管代谢疾病的免疫治疗新靶点

中科院1区顶刊|IF14&#xff1a;多组学MR联合单细胞时空分析&#xff0c;锁定心血管代谢疾病的免疫治疗新靶点 当下&#xff0c;免疫与代谢性疾病的关联研究已成为生命科学领域的前沿热点。随着研究的深入&#xff0c;我们愈发清晰地认识到免疫系统与代谢系统之间存在着极为复…...