【MATLAB】FIR滤波器的MATLAB实现
FIR滤波器的MATLAB实现
- FIR滤波器的设计
- fir1函数
- fir2函数
与IIR滤波器相比,FIR滤波器既有其优势也有其局限性。FIR滤波器的主要优点包括:
- 精确的线性相位响应;
- 永远保持稳定性;
- 设计方法通常是线性的;
- 在硬件实现中具有更高的运行效率;
- 启动传输仅需有限的时间。
然而,FIR滤波器也存在一些显著的缺点:
- 为了达到与IIR滤波器相同的性能要求,FIR滤波器通常需要更高的阶数;
- 相应地,FIR滤波器的延迟时间比具备相同性能的IIR滤波器要高得多。
FIR滤波器的设计
MATLAB 信号处理工具箱提供了表1用于设计 FIR 数字滤波器的方法和工具函数。
设计方法 | 说明 | 工具函数 |
---|---|---|
窗函数法 | 对理想滤波器进行加窗处理,并根据滤波器的性能指标截取某一段,以近似地实现理想滤波器 | fir1, fir2, kaiserord |
多带和过渡带 | 等波纹或者最小二乘法逼近频率范围内的子带 | firls, firpm, firpmord |
约束最小二乘法 | 满足最大误差限制条件下使整个频带平方误差最小化 | fircls, fircls1 |
任意响应法 | 任意响应,包括非线性相位和复杂滤波器 | cfirpm |
升余弦法 | 具有光滑余弦过渡带的低通滤波器的设计 | firreos |
窗函数法是设计FIR滤波器的重要方法之一,本文主要介绍FIR滤波器的窗函数设计方法。
在实际应用中,遇到的离散时间信号通常是有限长度的,因此在信号处理中不可避免地会遇到数据截短的问题。对于离散序列的截短,可以通过序列与窗函数的相乘来实现。
常用的窗函数包括矩形窗、巴特利特(Bartlett)窗、三角窗、海明(Hamming)窗、汉宁(Hanning)窗、布莱克曼(Blackman)窗、切比雪夫(Chebyshev)窗和凯泽(Kaiser)窗。MATLAB信号处理工具箱提供了一组用于生成这些窗函数的函数,具体见表2。
函数 | 函数功能 |
---|---|
w=bartlett(n) | 生成巴特立特 ( Bartlett ) 窗 |
w=blackman(n) | 生成布莱克曼 ( Blackman ) 窗 |
w=boxcar(n) | 生成矩形窗 |
w=chebwin(n) | 生成切比雪夫 ( Chebyshev ) 窗 |
w-hamming(n) | 生成海明 ( Hamming ) 窗 |
w=hanning(n) | 生成汉宁 ( Hanning ) 窗 |
w=kaiser(n) | 生成凯泽 ( Kaiser ) 窗 |
w=triang(n) | 生成三角窗 |
函数说明 | n为窗的长度 |
fir1函数
MATLAB信号处理工具箱提供了基于加窗的线性相位FIR滤波器设计函数 fir1 和 fir2。fir1 函数的调用语法如下:
b=fir1(n,Wn,'fype',window)
其中:
- n 表示滤波器的阶数。
- ftype 表示所设计滤波器的类型,可选参数包括:
- high:高通滤波器
- stop:带阻滤波器
- DC-1:多通带滤波器,第一频带为通带
- DC-0:多通带滤波器,第一频带为阻带
- 默认情况下,fir1 设计的是低通或带通滤波器。
- window 为窗函数,是一个长度为 n+1 的列向量。默认情况下,函数自动使用 Hamming 窗。
例1. 设计一个48阶的FIR带通滤波器,通带范围为0.35≤w≤0.65。
clc;clear;closeb = fir1(48,[0.35 0.65]); % 调用fir1函数进行FIR带通滤波器设计
freqz(b,1,512) % 画出幅频和相频响应图
输出的频率响应特性如图1所示:
例2. 用窗函数法设计多通带滤波器,归一化通带为[0 0.2]、[0.4 0.6]、[0.8 1]。由于高频端为通带,因此滤波器的阶数应为偶数,这里定为40。
首先将通带要求用向量w来表示,然后调用fir1函数进行滤波器设计。
w=[0.2 0.4 0.6 0.8]; % 滤波器设计参数
b=fir1(40,w,'dc-1'); % 用窗函数法设计多通带滤波器
freqz(b,1,512) % 绘制幅频-相频特性图
输出的幅频-相频特性如图2所示。
fir2函数
MATLAB信号处理工具箱提供了fir2函数,用于基于频率采样的有限冲激响应(FIR)滤波器设计。其调用语法如下:
b = fir2(n, f, m, npt, lap, window)
- n:滤波器的阶数。
- f:频率向量,其取值范围在 [0, 1] 之间。
- m:幅度响应向量,其取值范围也在 [0, 1] 之间。
- npt:用于频率响应插值的点数,默认值为 512。
- lap:一个参数,用于指定 fir2 在重复频率点附近插入的区域大小。
- window:窗函数类型,其长度必须为 n + 1,默认使用 Hamming 窗。
- b 向量表示返回的滤波器系数。
例3. 设计一个50阶低通滤波器,并且绘制理想频率响应和实际频率响应图。
f=[0 0.6 0.6 1];
m=[1 1 0 0];
b =fir2(50,f,m);
[h,w]=freqz(b,1,128);
plot(f,m,w/pi,abs(h)) % 画出幅频和相频响应图
legend('Ideal','fir2 Designed')
title('Comparison of Frequency Response Magnitudes ')
xlabel('Normalized Frequency(rad/sample)');
ylabel('magnitude')
输出的频率响应特性如图3所示:
END
2024年9月6日
相关文章:

【MATLAB】FIR滤波器的MATLAB实现
FIR滤波器的MATLAB实现 FIR滤波器的设计fir1函数fir2函数 与IIR滤波器相比,FIR滤波器既有其优势也有其局限性。FIR滤波器的主要优点包括: 精确的线性相位响应;永远保持稳定性;设计方法通常是线性的;在硬件实现中具有更…...

【RabbitMQ之一:windows环境下安装RabbitMQ】
目录 一、下载并安装Erlang1、下载Erlang2、安装Erlang3、配置环境变量4、验证erlang是否安装成功 二、下载并安装RabbitMQ1、下载RabbitMQ2、安装RabbitMQ3、配置环境变量4、验证RabbitMQ是否安装成功5、启动RabbitMQ服务(安装后服务默认自启动) 三、安…...

ISO26262和Aspice之间的关联
ASPICE 介绍: ASPICE(Automotive Software Process Improvement and Capability dEtermination)是汽车软件过程改进及能力评定的模型,它侧重于汽车软件的开发过程。ASPICE 定义了一系列的过程和活动,包括需求管理、软…...

对极约束及其性质 —— 公式详细推导
Title: 对极约束及其性质 —— 公式详细推导 文章目录 前言1. 对极约束 (Epipolar Constraint)2. 坐标转换 (Coordinate Transformations)3. 像素坐标 (Pixel Coordinates)4. 像素坐标转换 (Transformations of Pixel Coordinates)5. 本质矩阵 (Essential Matrix)6. 线坐标 (Co…...
【论文精读】SCINet-基于降采样和交互学习的时序卷积模型
《SCINet: Time Series Modeling and Forecasting with Sample Convolution and Interaction》的作者团队来自香港中文大学,发表在NeurIPS 2022会议上。 动机 该论文的出发点是观察到时间序列数据具有独特的属性:即使在将时间序列下采样成两个子序列后,时间关系(例如数据…...

深度学习与大模型第1课环境搭建
文章目录 深度学习与大模型第1课环境搭建1. 安装 Anaconda2. 修改环境变量2.1 修改 .condarc 文件2.2 使用 Anaconda Prompt 修改环境变量 3. 新建 .ipynb 文件 机器学习基础编程:常见问题: 深度学习与大模型第1课 环境搭建 1. 安装 Anaconda 首先&am…...

JDK新特性
LTS Record jdk16 不是方法 是一个定 # Sealed Class/Interface jdk17 限制只能由某些类继承 CompletableFuture jkd8 PatternMatching of instanceOf jdk16 switch expressions jdk14 Stream.collect() Collector Collector API Collector.groupBy Collector实战 1. …...
数据处理与数据填充在Pandas中的应用
在数据分析和机器学习项目中,数据处理是至关重要的一步。Pandas作为Python中用于数据分析和操作的一个强大库,提供了丰富的功能来处理和清洗数据。本文将深入探讨Pandas在数据处理,特别是数据填充方面的应用。 在实际的数据集中,…...
【百日算法计划】:每日一题,见证成长(010)
题目 合并两个排序的链表 输入两个递增排序的链表,合并这两个链表并使新链表中的节点仍然是递增排序的 示例1: 输入:1->2->4, 1->3->4 输出:1->1->2->3->4->4 思路 引入一个带虚拟头结点和tail指针的…...

【WPF】WPF学习之【二】布局学习
WPF布局学习 常用布局Grid网格布局StackPanel 布局CanvasDockPanel布局WrapPanel布局 常用布局 1、StackPanel: 学习如何使用StackPanel进行垂直和水平布局。 2、Grid: 掌握Grid的网格布局技术。 3、Canvas: 了解Canvas的绝对定位布局。 4、DockPanel: 学习DockPanel的停靠…...

KEIL中编译51程序 算法计算异常的疑问
KEIL开发 51 单片机程序 算法处理过程中遇到的问题 ...... by 矜辰所致前言 因为产品的更新换代, 把所有温湿度传感器都换成 SHT40 ,替换以前的 SHT21。在 STM32 系列产品上的替换都正常,但是在一块 51 内核的无线产品上面,数据…...

pikachu文件包含漏洞靶场
本地文件包含 1、先随意进行提交 可以得出是GET传参 可以在filename参数进行文件包含 2、准备一个2.jpg文件 内容为<?php phpinfo();?> 3、上传2.jpg文件 4、访问文件保存的路径uploads/2.jpg 5、将我们上传的文件包含进来 使用../返回上级目录 来进行包含木马文件 …...

基于DPU与SmartNIC的K8s Service解决方案
1. 方案背景 1.1. Kubernetes Service介绍 Kubernetes Service是Kubernetes中的一个核心概念,它定义了一种抽象,用于表示一组提供相同功能的Pods(容器组)的逻辑集合,并提供了一种方式让这些Pods能够被系统内的其他组…...

SLM561A系列 60V 10mA到50mA线性恒流LED驱动芯片 为智能家居照明注入新活力
SLM561A系列选型参考: SLM561A10ae-7G SOD123 SLM561A15ae-7G SOD123 SLM561A20ae-7G SOD123 SLM561A25ae-7G SOD123 SLM561A30ae-7G SOD123 SLM561A35ae-7G SOD123 SLM561A40ae-7G SOD123 SLM561A45ae-7G SOD123 SLM561A50ae-7G SOD123 …...
Requests库对session的支持
场景:如何获取登录时响应消息中的sessionid,以及如何在后续请求中把sessionid添到cookie中 Requests库提供了一个Session类,通过requests库中的session对象,requests库会自动帮我们保存服务端返回的cookie数据(set-cookie里的内容…...

利用深度学习实现验证码识别-2-使用Python导出ONNX模型并在Java中调用实现验证码识别
1. Python部分:导出ONNX模型 首先,我们需要在Python中定义并导出一个已经训练好的验证码识别模型。以下是完整的Python代码: import string import torch import torch.nn as nn import torch.nn.functional as FCHAR_SET string.digits# …...
如何通过Spring Cloud Consul增强微服务安全性和可靠性
为了增强微服务的安全性和可靠性,Spring Cloud Consul 是一个非常强大的工具。它不仅提供了服务发现和配置管理功能,还能够有效地管理微服务的安全和健康状态。本文将深入探讨如何通过 Spring Cloud Consul 来增强微服务的安全性和可靠性,主要…...
无代码搭建小程序zion
无代码搭建小程序zion 一、无代码搭建小程序zion的降低技术门槛,提升开发效率 1. 无需编程经验:Zion无代码平台通过提供直观的可视化界面和拖拽式操作,让开发者无需具备复杂的编程技能也能进行小程序的开发。这种方式大大降低了技术门槛&a…...

【南方科技大学】CS315 Computer Security 【Lab1 Packet Sniffing and Wireshark】
目录 IntroductionBackgroundTCP/IP Network StackApplication LayerTransport LayerInternet LayerLink LayerPacket Sniffer Getting WiresharkStarting WiresharkCapturing PacketsTest Run Questions for the Lab Introduction 实验的第一部分介绍数据包嗅探器 Wireshark。…...

【人工智能/机器学习/机器人】数学基础-学习笔记
函数 奇偶性: 偶函数: f ( − x ) f ( x ) f(-x)f(x) f(−x)f(x) y轴对称 f ( x ) x 2 f(x)x^2 f(x)x2 f ( − x ) ( − x ) 2 x 2 f ( x ) f(-x)(-x)^2x^2f(x) f(−x)(−x)2x2f(x) 奇函数: f ( − x ) − f ( x ) f(-…...
【AI学习】三、AI算法中的向量
在人工智能(AI)算法中,向量(Vector)是一种将现实世界中的数据(如图像、文本、音频等)转化为计算机可处理的数值型特征表示的工具。它是连接人类认知(如语义、视觉特征)与…...

C++ 求圆面积的程序(Program to find area of a circle)
给定半径r,求圆的面积。圆的面积应精确到小数点后5位。 例子: 输入:r 5 输出:78.53982 解释:由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982,因为我们只保留小数点后 5 位数字。 输…...
在鸿蒙HarmonyOS 5中使用DevEco Studio实现企业微信功能
1. 开发环境准备 安装DevEco Studio 3.1: 从华为开发者官网下载最新版DevEco Studio安装HarmonyOS 5.0 SDK 项目配置: // module.json5 {"module": {"requestPermissions": [{"name": "ohos.permis…...

【Java多线程从青铜到王者】单例设计模式(八)
wait和sleep的区别 我们的wait也是提供了一个还有超时时间的版本,sleep也是可以指定时间的,也就是说时间一到就会解除阻塞,继续执行 wait和sleep都能被提前唤醒(虽然时间还没有到也可以提前唤醒),wait能被notify提前唤醒…...

Qt的学习(二)
1. 创建Hello Word 两种方式,实现helloworld: 1.通过图形化的方式,在界面上创建出一个控件,显示helloworld 2.通过纯代码的方式,通过编写代码,在界面上创建控件, 显示hello world; …...

【动态规划】B4336 [中山市赛 2023] 永别|普及+
B4336 [中山市赛 2023] 永别 题目描述 你做了一个梦,梦里有一个字符串,这个字符串无论正着读还是倒着读都是一样的,例如: a b c b a \tt abcba abcba 就符合这个条件。 但是你醒来时不记得梦中的字符串是什么,只记得…...
Redis——Cluster配置
目录 分片 一、分片的本质与核心价值 二、分片实现方案对比 三、分片算法详解 1. 范围分片(顺序分片) 2. 哈希分片 3. 虚拟槽分片(Redis Cluster 方案) 四、Redis Cluster 分片实践要点 五、经典问题解析 C…...

STM32CubeMX-H7-19-ESP8266通信(中)--单片机控制ESP8266实现TCP地址通信
前言 上篇文章我们已经能够使用串口助手实现esp8266的几种通信,接下来我们使用单片机控制实现。这篇文章会附带教程,增加.c和,.h,把串口和定时器放到对应的编号,然后调用初始化就可以使用了。 先讲解,然后末尾再放源码…...

DROPP算法详解:专为时间序列和空间数据优化的PCA降维方案
DROPP (Dimensionality Reduction for Ordered Points via PCA) 是一种专门针对有序数据的降维方法。本文将详细介绍该算法的理论基础、实现步骤以及在降维任务中的具体应用。 在现代数据分析中,高维数据集普遍存在特征数量庞大的问题。这种高维特性不仅增加了计算…...

Kotlin REPL初探
文章目录 1. Kotlin REPL 简介2. 在命令行中玩Kotlin REPL2.1 下载Kotlin编译器压缩包2.2 安装配置Kotlin编译器2.3 启动Kotlin交互式环境2.4 在命令行玩Kotlin REPL 3. 在IDEA里玩Kotlin REPL3.1 打开Kotlin REPL窗口3.2 在Kotlin REPL窗口玩代码 4. Kotlin REPL 的优势 1. Ko…...