当前位置: 首页 > news >正文

【机器学习】XGBoost的用法和参数解释

一、XGBoost的用法

流程:

5f587abaafa94cd8a490cc8fa8d88a08.png

代码案例:

84dacc597b4b4d8a9cd5cd2766f58f0b.png

二、XGBoost的几大参数

1、一般参数,用于集成算法本身

n_estimators

集成算法通过在数据上构建多个弱 评估器,汇总所有弱评估器的建模结果,以获取比单个模型更好的回归或分类表现。sklearn中n_estimators表示弱评估器的个数,在xgboost中用num_boost_round表示,是xgboost.train()中对应第3个参数。这个参数非常强大,常常能够一次性将模型调整到极限, 在XGBoost中它也是如此。

②verbosity 

训练中是否打印每次训练的结果

verbosity , default = 0, 取值范围[0,3] 0 (silent), 1 (warning), 2 (info), 3 (debug).
#设置 verbosity = 3,会打印详细的训练过程

③subsample

随机抽样的时候抽取的样本比例,范围(0,1],默认是1

采样会减少样本数量,而从学习曲线 来看样本数量越少模型的过拟合会越严重,因为对模型来说,数据量越少模型学习越容易,学到的规则也会越具体越 不适用于测试样本。所以subsample参数通常是在样本量本身很大的时候来调整和使用。

④eta

集成中的学习率,又称为步长 以控制迭代速率,常用于防止过拟合,默认0.3,取值范围[0,1]

eta是迭代决策树时的步长(shrinkage),又叫做学习率(learning rate)。和逻辑回归中的 类似, 越大,迭代的速度越快,算法的极限很快被达到,有可能无法收敛到真正的最佳。 越小,越有可能找到更精确的最佳值,更多的空间被留给了后面建立的树,但迭代速度会比较缓慢

2、弱评估器参数

①booster(XGBoost中为xgb_model )

使用哪种弱评估器。可以输入gbtreegblineardart。输入的评估器不同,使用 的params参数也不同,每种评估器都有自 己的params列表。评估器必须于param参 数相匹配,否则报错。

gbtree:即是论文中主要讨论的树模型,推荐使用
gblinear:是线性模型,表现很差,接近一个LASSO
dart:Dropouts meet Multiple Additive Regression Trees,可译为抛弃提升树,在建树的过 程中会抛弃一部分树,比梯度提升树有更好的防过拟合功能。

②objective(重要)

(1)集成算法中的损失函数是可选的,要选用什么损失函数取决于我们希望解决什么问题,以及希望使用怎样的模型。比如说,如果我们的目标是进行回归预测,那我们可以选择调节后的均方误差RMSE作为我们的损失函数。如果我们是进行分类预测,那我们可 以选择错误率error或者对数损失log_loss。

(2)XGBoost的目标函数(Obj)被写作:传统损失函数 + 模型复杂度。

3ccaf9d2a9044ce5b166fe13d25e89ea.png

使用参数“objective"来确定我们目标函数的第一部分中的 ,也就是衡量损失的部分

(3)常见的损失函数(***)

xgb.train():objective: 默认reg:squarederror(XGBoost)
xgb.XGBRegressor() :objective: 默认reg:squarederror(Sklearn库)
xgb.XGBClassifier() : objective: 默认binary:logistic(Sklearn库)

输入选用的损失函数
reg:linear使用线性回归的损失函数,均方误差,回归时使用
binary:logistic使用逻辑回归的损失函数,对数损失log_loss,二分类时使用,,输出为概率
binary:hinge使用支持向量机的损失函数,Hinge Loss,二分类时使用
multi:softmax使用softmax损失函数,多分类时使用,同时需要设置参数num_class(类别个 数),返回预测的类别(不是概率)

PS:

如果不指定具体使用哪种objective,函数会根据是回归问题还是分类问题,默认选择相应的损失函数;
如果自行设定objective的类型,其类型需与业务的类型(回归 or 分类)相对应,否则容易报错。

③参数化决策树 :参数alpha,lambda

L1正则项的参数 alpha,默认0,取值范围[0, +∞]

L2正则项的参数 lambda,默认1,取值范围[0, +∞]

④重要参数gamma

复杂度的惩罚项:gamma,默认0取值范围[0, +∞]

实践证明, gamma是对梯度提升树影响最大 的参数之一,其效果丝毫不逊色于n_estimators和防止过拟合的神器max_depth。同时, 还是我们让树停止生长的重要参数。

e3b71a45fff84c70b8f22793f8e2c7c7.png

⑤剪枝的参数(减轻过拟合带来的影响)

以下是几个影响比较大,常用于剪枝的参数

7b28319add3c4eabb064ba62e2b0788a.png

ps:在XGBoost中,最大深度的功能与 参数 相似,因此如果先调节了 ,则最大深度可能无法展示出巨大的效果。当然,如果先调整了最大深度,则 也有 可能无法显示明显的效果。

调参过程:通常当我们获得了一个数据集后,我们先使用网格搜索找出比较合适的n_estimators和eta组合,然后使用gamma或 者max_depth观察模型处于什么样的状态(过拟合还是欠拟合,处于方差-偏差图像的左边还是右边?),最后再决 定是否要进行剪枝

3、其他参数

①xgboost中回归模型的默认模型评估指标参数:eval_metric

该参数的使用是为了我们方便使用xgboost.cv(交叉验证

09271c21ea934ad0b5ba3feb29ae2e35.png

指标含义
rmse回归用,调整后的均方误差
mae回归用,绝对平均误差
logloss二分类用,对数损失
mlogloss多分类用,对数损失
error分类用,分类误差,等于1-准确率
auc分类用,AUC面积
  

②调节样本不平衡的参数scale_pos_weight

控制正负样本比例,表示为负/正样本比例 在样本不平衡问题中使用:scale_pos_weight,默认1

③更多计算资源:n_jobs

nthread和n_jobs都是算法运行所使用的线程,与sklearn中规则一样,输入整数表示使用的线程,输入-1表示使用计 算机全部的计算资源。如果我们的数据量很大,则我们可能需要这个参数来为我们调用更多线程。

④降低学习难度:base_score

base_score是一个比较容易被混淆的参数,它被叫做全局偏差,在分类问题中,它是我们希望关注的分类的先验概 率。通常我们不会使用这个参数,但对于严重的样本不均衡问 题,设置一个正确的base_score取值是很有必要的。

⑤生成树的随机模式:random_state

对于那些本质上是随机的过程,我们有必要控制随机的状态,这样才能重复的展现相同的结果的时候就需要设置我们的random_state为一个固定值。

⑥自动处理缺失值:missing

XGBoost被设计成是能够自动处理缺失值的模型,这个设计的初衷其实是为了让XGBoost能够处理稀疏矩阵。

三、总结

  这里只是简单介绍了 XGBoost的简单用法和一些参数的含义,方便大家入门学习,而XGBoost本身的运用与实践是很广泛的,后期我也会出一些XGBoost实战的案例,分享给大家!最后,如果这篇文章对小伙伴有所帮助,别忘了点赞、关注支持一波哦~大家一起进步!!!

 

相关文章:

【机器学习】XGBoost的用法和参数解释

一、XGBoost的用法 流程: 代码案例: 二、XGBoost的几大参数 1、一般参数,用于集成算法本身 ①n_estimators 集成算法通过在数据上构建多个弱 评估器,汇总所有弱评估器的建模结果,以获取比单个模型更好的回归或分类…...

Vivado 约束

步骤5:保存约束 约束管理是设计流程的重要一步,Vivado设计套件 为您提供了在现有约束文件中添加新约束、覆盖的灵活性 现有约束,或创建新的约束文件以跟踪设计更改或完成 缺少约束。 您为设计创建了一些定时异常,但这些异常仅存在…...

如何在Excel中创建一个VBA宏,并设置一个按钮来执行这个宏

下面是一个详细的步骤指南 步骤1:创建VBA宏 1. 打开Excel并按 Alt F11 打开VBA编辑器。 2. 在VBA编辑器中,选择 Insert > Module 来插入一个新的模块。 3. 将以下代码粘贴到模块中: vba Sub CreateNewSheet() 声明一个工作表对象Dim …...

H3C SR-MPLS通过OSPF通告SID配置

首先在配置前理解几个基本概念 Prefix SID配置 统一分配和配置(全局规划)loopback和prefix sidPrefix SIDSRGB Base(16000)index Adj SID自动生成 对应SR节点间的互联链路SR节点本地标识,从设备本地Segment池中动态…...

JS面试真题 part2

JS面试真题 part2 6、typeof 与 instanceof 区别7、JavaScript原型,原型链?有什么特点8、说说你对作用域链的理解9、谈谈this对象的理解10、说说new操作符具体干了什么 6、typeof 与 instanceof 区别 自己回答: typeof:用来判断数…...

python 下载excel 添加水印

Python 在 Excel 中添加水印 https://zhuanlan.zhihu.com/p/499239298 生成图片 from PIL import Image, ImageDraw, ImageFont import numpy as np import matplotlib.pyplot as plt# 创建一个新的白色图片 img Image.new(RGB, (200, 100), color(255, 255, 255))# 指定中…...

CosyVoice:开源强大的 AI 语音合成工具

在当今科技飞速发展的时代,AI 语音合成技术正逐渐改变着我们的生活。今天,就为大家介绍一款卓越的语音合成工具——CosyVoice。 一、安装步骤 克隆和安装: 克隆仓库:git clone --recursive https://github.com/FunAudioLLM/Cos…...

【靶场】Pikachu—XSS Cross-Site Scripting(前五关)

🏘️个人主页: 点燃银河尽头的篝火(●’◡’●) 如果文章有帮到你的话记得点赞👍收藏💗支持一下哦 【靶场】Pikachu—XSS Cross-Site Scripting(前五关) 第一关 反射型xss(get)第二关 反射型xss(post)第三关…...

Dance with Compiler - EP2

今天来熟悉汇编指令。 基本指令特点 str: store value to memory ldr: load value from memory stp: store register value to stack ldp: load stack value to register 更新寄存器的操作,一般结果寄存器是左操作数。 写内存的操作(str)&…...

微博视频无水印下载的方法

在如今的数字时代,社交媒体平台如微博已经成为人们分享日常生活、获取新闻和娱乐内容的重要渠道。我们时常会在刷微博时看到一些有趣的视频图片,或是名人的访谈,或是搞笑的短片,有时甚至是一些珍贵的历史资料。这些视频不仅内容丰…...

C语言 | Leetcode C语言题解之第390题消除游戏

题目&#xff1a; 题解&#xff1a; int lastRemaining(int n) {int a1 1;int k 0, cnt n, step 1;while (cnt > 1) {if (k % 2 0) { // 正向a1 a1 step;} else { // 反向a1 (cnt % 2 0) ? a1 : a1 step;}k;cnt cnt >> 1;step step << 1;}return …...

虚拟现实辅助工程技术助力多学科协同评估

在当今高速发展的经济环境中&#xff0c;制造业面临着多重挑战&#xff0c;包括提高产品性能、压缩设计周期、实现轻量化设计和降低成本。为了有效应对这些挑战&#xff0c;多学科协同评估成为缩短研发周期和提升研制质量的关键手段。 传统的多学科评估面临着数据孤立与融合困难…...

Java获取小程序码示例(三种小程序码)

首先我们可以看到官方文档上是有三种码的 获取小程序码 这里特别要注意的是第一种和第三种是有数量限制的&#xff0c;所以大家生成的时候记得保存&#xff0c;也不要一直瞎生成 还有一点要注意的是第一种和第二种是太阳码 第三种是方形码 好了直接上代码 这里要注意&#xff…...

【最新华为OD机试E卷-支持在线评测】分糖果(100分)-多语言题解-(Python/C/JavaScript/Java/Cpp)

🍭 大家好这里是春秋招笔试突围 ,一枚热爱算法的程序员 ✨ 本系列打算持续跟新华为OD-E/D卷的三语言AC题解 💻 ACM金牌🏅️团队| 多次AK大厂笔试 | 编程一对一辅导 👏 感谢大家的订阅➕ 和 喜欢💗 🍿 最新华为OD机试D卷目录,全、新、准,题目覆盖率达 95% 以上,…...

Windows下Python和PyCharm的应用(二)__快捷键方式的设定

前言 程序写久了&#xff0c;难免会形成自己的编程习惯。比如对某一套快捷键的使用&#xff0c;已经形成了肌肉记忆。 为了方便快捷键的使用&#xff0c;可以在PyCharm中设置自己喜欢的快捷键。 我比较习惯于微软Visual Studio的快捷键设置。&#xff08;因为早些年VC开发用的…...

网络安全宗旨和目标

网络安全涉及网络和相关数据及信息的保护与保障。它已从物理技术发展到防病毒和反网络钓鱼平台等软件方法。 在本章中&#xff0c;我们将详细讨论网络安全的主要目标和原则&#xff0c;并提供与之相关的具体示例。所以&#xff0c;让我们从网络安全的目标开始。 网络安全的目的…...

stm32之软件SPI读写W25Q64存储器应用案例

系列文章目录 1. stm32之SPI通信协议 文章目录 系列文章目录前言一、电路接线图二、应用案例代码三、应用案例分析3.1 SPI通信模块3.2 W25Q64模块3.3 主程序 前言 提示&#xff1a;本文主要用作在学习江科大自化协STM32入门教程后做的归纳总结笔记&#xff0c;旨在学习记录&a…...

Python数据验证库schema

目录 一、简述 二、安装schema库 三、使用 基本概念 代码示例 简单使用 列表验证 正则表达式 一、简述 schema用于简化数据验证的过程。它提供了一种简单的方式来定义数据结构&#xff0c;并验证传入的数据是否符合预期的结构。schema 库非常适合用于 Web 应用的请求验…...

python数据类型与运算符

1、数据类型 &#xff08;1&#xff09;Python中提供了基本数据类型&#xff1a; 数值类型&#xff1a;int整数类型、float浮点数类型、complex复数类型 布尔类型&#xff1a;bool&#xff0c;取值True / False 字符串&#xff1a;单引号包含、双引号包含、三对单引号/双引号…...

加密解密工具类

加密解密工具类 package com.example.modules.util;import javax.crypto.Cipher; import javax.crypto.KeyGenerator; import javax.crypto.SecretKey; import javax.crypto.spec.SecretKeySpec; import java.security.SecureRandom; import java.util.Base64; public…...

RocketMQ延迟消息机制

两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数&#xff0c;对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后&#xf…...

shell脚本--常见案例

1、自动备份文件或目录 2、批量重命名文件 3、查找并删除指定名称的文件&#xff1a; 4、批量删除文件 5、查找并替换文件内容 6、批量创建文件 7、创建文件夹并移动文件 8、在文件夹中查找文件...

Admin.Net中的消息通信SignalR解释

定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)

宇树机器人多姿态起立控制强化学习框架论文解析 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架&#xff08;一&#xff09; 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...

《基于Apache Flink的流处理》笔记

思维导图 1-3 章 4-7章 8-11 章 参考资料 源码&#xff1a; https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...

《C++ 模板》

目录 函数模板 类模板 非类型模板参数 模板特化 函数模板特化 类模板的特化 模板&#xff0c;就像一个模具&#xff0c;里面可以将不同类型的材料做成一个形状&#xff0c;其分为函数模板和类模板。 函数模板 函数模板可以简化函数重载的代码。格式&#xff1a;templa…...

现有的 Redis 分布式锁库(如 Redisson)提供了哪些便利?

现有的 Redis 分布式锁库&#xff08;如 Redisson&#xff09;相比于开发者自己基于 Redis 命令&#xff08;如 SETNX, EXPIRE, DEL&#xff09;手动实现分布式锁&#xff0c;提供了巨大的便利性和健壮性。主要体现在以下几个方面&#xff1a; 原子性保证 (Atomicity)&#xff…...

CSS | transition 和 transform的用处和区别

省流总结&#xff1a; transform用于变换/变形&#xff0c;transition是动画控制器 transform 用来对元素进行变形&#xff0c;常见的操作如下&#xff0c;它是立即生效的样式变形属性。 旋转 rotate(角度deg)、平移 translateX(像素px)、缩放 scale(倍数)、倾斜 skewX(角度…...

MySQL:分区的基本使用

目录 一、什么是分区二、有什么作用三、分类四、创建分区五、删除分区 一、什么是分区 MySQL 分区&#xff08;Partitioning&#xff09;是一种将单张表的数据逻辑上拆分成多个物理部分的技术。这些物理部分&#xff08;分区&#xff09;可以独立存储、管理和优化&#xff0c;…...

6.9-QT模拟计算器

源码: 头文件: widget.h #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QMouseEvent>QT_BEGIN_NAMESPACE namespace Ui { class Widget; } QT_END_NAMESPACEclass Widget : public QWidget {Q_OBJECTpublic:Widget(QWidget *parent nullptr);…...