当前位置: 首页 > news >正文

CosyVoice:开源强大的 AI 语音合成工具

在当今科技飞速发展的时代,AI 语音合成技术正逐渐改变着我们的生活。今天,就为大家介绍一款卓越的语音合成工具——CosyVoice。
A 3D rendering of the "CosyVoice" logo. The logo features a rounded font in pastel shades of pink, blue, and purple. The name is adornedwith stars, pink hearts, and a crown. The logo has a fun and youthful aesthetic. a microphone on left.The background is a soft gradient. This logo is perfect for romantic and youthful projects, photography, illustration, 3D rendering, typography, cinematic visuals, anime, fashion, and more.

一、安装步骤

  1. 克隆和安装
    • 克隆仓库:git clone --recursive https://github.com/FunAudioLLM/CosyVoice.git。如果克隆子模块失败,可以运行命令cd CosyVoice; git submodule update --init --recursive
  2. 安装 Conda:请参考https://docs.conda.io/en/latest/miniconda.html。
  3. 创建 Conda 环境
    • conda create -n cosyvoice python=3.8
    • conda activate cosyvoice
    • conda install -y -c conda-forge pynini==2.1.5
    • pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/ --trusted-host=mirrors.aliyun.com
  4. 解决 sox 兼容性问题
    • Ubuntu:sudo apt-get install sox libsox-dev
    • CentOS:sudo yum install sox sox-devel

二、模型下载

强烈建议下载预训练的CosyVoice - 300MCosyVoice - 300M - SFTCosyVoice - 300M - Instruct模型和CosyVoice - ttsfrd资源。

  1. SDK 模型下载
    from modelscope import snapshot_download
    snapshot_download('iic/CosyVoice - 300M', local_dir='pretrained_models/CosyVoice - 300M')
    snapshot_download('iic/CosyVoice - 300M - SFT', local_dir='pretrained_models/CosyVoice - 300M - SFT')
    snapshot_download('iic/CosyVoice - 300M - Instruct', local_dir='pretrained_models/CosyVoice - 300M - Instruct')
    snapshot_download('iic/CosyVoice - ttsfrd', local_dir='pretrained_models/CosyVoice - ttsfrd')
    
  2. git 模型下载(确保已安装 git lfs):
    mkdir -p pretrained_models
    git clone https://www.modelscope.cn/iic/CosyVoice - 300M.git pretrained_models/CosyVoice - 300M
    git clone https://www.modelscope.cn/iic/CosyVoice - 300M - SFT.git pretrained_models/CosyVoice - 300M - SFT
    git clone https://www.modelscope.cn/iic/CosyVoice - 300M - Instruct.git pretrained_models/CosyVoice - 300M - Instruct
    git clone https://www.modelscope.cn/iic/CosyVoice - ttsfrd.git pretrained_models/CosyVoice - ttsfrd
    
  3. 可选步骤:解压ttsfrd资源并安装ttsfrd包以获得更好的文本归一化性能,但这不是必需的。若不安装,将默认使用WeTextProcessing
    cd pretrained_models/CosyVoice - ttsfrd/
    unzip resource.zip -d.
    pip install ttsfrd - 0.3.6 - cp38 - cp38 - linux_x86_64.whl
    

三、基本用法

  1. 对于不同的推理需求选择不同的模型:
    • 零样本/跨语言推理,请使用CosyVoice - 300M模型。
    • SFT 推理,请使用CosyVoice - 300M - SFT模型。
    • 指令推理,请使用CosyVoice - 300M - Instruct模型。
  2. 首先,将third_party/Matcha - TTS添加到PYTHONPATH
    export PYTHONPATH=third_party/Matcha - TTS
    
  3. 示例代码:
    from cosyvoice.cli.cosyvoice import CosyVoice
    from cosyvoice.utils.file_utils import load_wav
    import torchaudiocosyvoice = CosyVoice('pretrained_models/CosyVoice - 300M - SFT')
    # sft usage
    print(cosyvoice.list_avaliable_spks())
    # change stream=True for chunk stream inference
    for i, j in enumerate(cosyvoice.inference_sft('你好,我是通义生成式语音大模型,请问有什么可以帮您的吗?', '中文女', stream=False)):torchaudio.save('sft_{}.wav'.format(i), j['tts_speech'], 22050)cosyvoice = CosyVoice('pretrained_models/CosyVoice - 300M')
    # zero_shot usage, <|zh|><|en|><|jp|><|yue|><|ko|> for Chinese/English/Japanese/Cantonese/Korean
    prompt_speech_16k = load_wav('zero_shot_prompt.wav', 16000)
    for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', prompt_speech_16k, stream=False)):torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], 22050)
    # cross_lingual usage
    prompt_speech_16k = load_wav('cross_lingual_prompt.wav', 16000)
    for i, j in enumerate(cosyvoice.inference_cross_lingual('<|en|>And then later on, fully acquiring that company. So keeping management in line, interest in line with the asset that\'s coming into the family is a reason why sometimes we don\'t buy the whole thing.', prompt_speech_16k, stream=False)):torchaudio.save('cross_lingual_{}.wav'.format(i), j['tts_speech'], 22050)cosyvoice = CosyVoice('pretrained_models/CosyVoice - 300M - Instruct')
    # instruct usage, support <laughter></laughter><strong></strong>[laughter][breath]
    for i, j in enumerate(cosyvoice.inference_instruct('在面对挑战时,他展现了非凡的<strong>勇气</strong>与<strong>智慧</strong>。', '中文男', 'Theo \'Crimson\', is a fiery, passionate rebel leader. Fights with fervor for justice, but struggles with impulsiveness.', stream=False)):torchaudio.save('instruct_{}.wav'.format(i), j['tts_speech'], 22050)
    

四、启动 Web 演示

可以使用 Web 演示页面快速熟悉 CosyVoice,支持 sft/零样本/跨语言/指令推理。具体详情请参考演示网站。
示例命令:python3 webui.py --port 50000 --model_dir pretrained_models/CosyVoice - 300M(可根据需要更改模型)。

五、高级用法

对于高级用户,examples/libritts/cosyvoice/run.sh中提供了训练和推理脚本,可以按照此示例熟悉 CosyVoice。

六、构建用于部署

若要使用 grpc 进行服务部署,可执行以下步骤,否则可忽略此步骤。

  1. 构建 docker 镜像:
    cd runtime/python
    docker build -t cosyvoice:v1.0.
    
  2. 运行 docker 容器(根据需要选择推理模式):
    • grpc 用法
      docker run -d --runtime=nvidia -p 50000:50000 cosyvoice:v1.0 /bin/bash -c "cd /opt/CosyVoice/CosyVoice/runtime/python/grpc && python3 server.py --port 50000 --max_conc 4 --model_dir iic/CosyVoice - 300M && sleep infinity"
      cd grpc && python3 client.py --port 50000 --mode <sft|zero_shot|cross_lingual|instruct>
      
    • fastapi 用法
      docker run -d --runtime=nvidia -p 50000:50000 cosyvoice:v1.0 /bin/bash -c "cd /opt/CosyVoice/CosyVoice/runtime/python/fastapi && python3 server.py --port 50000 --model_dir iic/CosyVoice - 300M && sleep infinity"
      cd fastapi && python3 client.py --port 50000 --mode <sft|zero_shot|cross_lingual|instruct>
      

CosyVoice 以其强大的功能和灵活的使用方式,为我们带来了全新的语音合成体验。快来尝试吧!

相关文章:

CosyVoice:开源强大的 AI 语音合成工具

在当今科技飞速发展的时代&#xff0c;AI 语音合成技术正逐渐改变着我们的生活。今天&#xff0c;就为大家介绍一款卓越的语音合成工具——CosyVoice。 一、安装步骤 克隆和安装&#xff1a; 克隆仓库&#xff1a;git clone --recursive https://github.com/FunAudioLLM/Cos…...

【靶场】Pikachu—XSS Cross-Site Scripting(前五关)

&#x1f3d8;️个人主页&#xff1a; 点燃银河尽头的篝火(●’◡’●) 如果文章有帮到你的话记得点赞&#x1f44d;收藏&#x1f497;支持一下哦 【靶场】Pikachu—XSS Cross-Site Scripting&#xff08;前五关&#xff09; 第一关 反射型xss(get)第二关 反射型xss(post)第三关…...

Dance with Compiler - EP2

今天来熟悉汇编指令。 基本指令特点 str: store value to memory ldr: load value from memory stp: store register value to stack ldp: load stack value to register 更新寄存器的操作&#xff0c;一般结果寄存器是左操作数。 写内存的操作&#xff08;str&#xff09;&…...

微博视频无水印下载的方法

在如今的数字时代&#xff0c;社交媒体平台如微博已经成为人们分享日常生活、获取新闻和娱乐内容的重要渠道。我们时常会在刷微博时看到一些有趣的视频图片&#xff0c;或是名人的访谈&#xff0c;或是搞笑的短片&#xff0c;有时甚至是一些珍贵的历史资料。这些视频不仅内容丰…...

C语言 | Leetcode C语言题解之第390题消除游戏

题目&#xff1a; 题解&#xff1a; int lastRemaining(int n) {int a1 1;int k 0, cnt n, step 1;while (cnt > 1) {if (k % 2 0) { // 正向a1 a1 step;} else { // 反向a1 (cnt % 2 0) ? a1 : a1 step;}k;cnt cnt >> 1;step step << 1;}return …...

虚拟现实辅助工程技术助力多学科协同评估

在当今高速发展的经济环境中&#xff0c;制造业面临着多重挑战&#xff0c;包括提高产品性能、压缩设计周期、实现轻量化设计和降低成本。为了有效应对这些挑战&#xff0c;多学科协同评估成为缩短研发周期和提升研制质量的关键手段。 传统的多学科评估面临着数据孤立与融合困难…...

Java获取小程序码示例(三种小程序码)

首先我们可以看到官方文档上是有三种码的 获取小程序码 这里特别要注意的是第一种和第三种是有数量限制的&#xff0c;所以大家生成的时候记得保存&#xff0c;也不要一直瞎生成 还有一点要注意的是第一种和第二种是太阳码 第三种是方形码 好了直接上代码 这里要注意&#xff…...

【最新华为OD机试E卷-支持在线评测】分糖果(100分)-多语言题解-(Python/C/JavaScript/Java/Cpp)

🍭 大家好这里是春秋招笔试突围 ,一枚热爱算法的程序员 ✨ 本系列打算持续跟新华为OD-E/D卷的三语言AC题解 💻 ACM金牌🏅️团队| 多次AK大厂笔试 | 编程一对一辅导 👏 感谢大家的订阅➕ 和 喜欢💗 🍿 最新华为OD机试D卷目录,全、新、准,题目覆盖率达 95% 以上,…...

Windows下Python和PyCharm的应用(二)__快捷键方式的设定

前言 程序写久了&#xff0c;难免会形成自己的编程习惯。比如对某一套快捷键的使用&#xff0c;已经形成了肌肉记忆。 为了方便快捷键的使用&#xff0c;可以在PyCharm中设置自己喜欢的快捷键。 我比较习惯于微软Visual Studio的快捷键设置。&#xff08;因为早些年VC开发用的…...

网络安全宗旨和目标

网络安全涉及网络和相关数据及信息的保护与保障。它已从物理技术发展到防病毒和反网络钓鱼平台等软件方法。 在本章中&#xff0c;我们将详细讨论网络安全的主要目标和原则&#xff0c;并提供与之相关的具体示例。所以&#xff0c;让我们从网络安全的目标开始。 网络安全的目的…...

stm32之软件SPI读写W25Q64存储器应用案例

系列文章目录 1. stm32之SPI通信协议 文章目录 系列文章目录前言一、电路接线图二、应用案例代码三、应用案例分析3.1 SPI通信模块3.2 W25Q64模块3.3 主程序 前言 提示&#xff1a;本文主要用作在学习江科大自化协STM32入门教程后做的归纳总结笔记&#xff0c;旨在学习记录&a…...

Python数据验证库schema

目录 一、简述 二、安装schema库 三、使用 基本概念 代码示例 简单使用 列表验证 正则表达式 一、简述 schema用于简化数据验证的过程。它提供了一种简单的方式来定义数据结构&#xff0c;并验证传入的数据是否符合预期的结构。schema 库非常适合用于 Web 应用的请求验…...

python数据类型与运算符

1、数据类型 &#xff08;1&#xff09;Python中提供了基本数据类型&#xff1a; 数值类型&#xff1a;int整数类型、float浮点数类型、complex复数类型 布尔类型&#xff1a;bool&#xff0c;取值True / False 字符串&#xff1a;单引号包含、双引号包含、三对单引号/双引号…...

加密解密工具类

加密解密工具类 package com.example.modules.util;import javax.crypto.Cipher; import javax.crypto.KeyGenerator; import javax.crypto.SecretKey; import javax.crypto.spec.SecretKeySpec; import java.security.SecureRandom; import java.util.Base64; public…...

validationtools中按键测试选项光标移除

最近处理一个问题&#xff0c;设备有方向键盘&#xff0c;做cit中的按键测试&#xff0c;发现按方向键第一次按键不能触发该键值&#xff0c;而是让屏幕第一个按钮获取焦点&#xff0c;然后再次按键&#xff0c;则其他正常。问题&#xff1a;进入界面第一次按键就要响应对应按键…...

【Hot100算法刷题集】哈希-02-字母异位词分组(含排序构造键、自定义键、自定义哈希函数法)

&#x1f3e0;关于专栏&#xff1a;专栏用于记录LeetCode中Hot100专题的所有题目 &#x1f3af;每日努力一点点&#xff0c;技术变化看得见 题目转载 题目描述 &#x1f512;link->题目跳转链接 给你一个字符串数组&#xff0c;请你将 字母异位词 组合在一起。可以按任意顺…...

用华为智驾,开启MPV的下半场

作者 |老缅 编辑 |德新 8月28日&#xff0c;岚图正式对外公布了全球首款搭载华为乾崑智驾和鸿蒙座舱的MPV——全新岚图梦想家。 新车定位「全景豪华科技旗舰MPV」&#xff0c;全系标配四驱&#xff0c;分为四驱鲲鹏版和四驱乾崑版。 其中岚图逍遥座舱和鲲鹏智驾构成的鲲鹏版…...

发烧时眼睛胀痛的多种原因

发烧时眼睛胀痛的多种原因 发烧时眼睛胀痛可能由多种原因引起&#xff0c;主要包括以下几个方面&#xff1a; 上呼吸道感染&#xff1a; 发烧通常由上呼吸道感染引起&#xff0c;如感冒等。这些疾病多由病毒或细菌感染导致&#xff0c;如流感病毒、副流感病毒、腺病毒等。当机…...

用ACF和PACF计算出一堆数据的周期个数以及周期时长,数据分析python

具体步骤 1使用ACF和PACF&#xff1a;可以通过查看ACF图中的周期性峰值&#xff0c;找到数据中的周期性。如果ACF图在某个滞后期处出现显著的正相关峰值&#xff0c;并且这种模式在多个滞后周期中重复出现&#xff0c;这就是周期性信号的特征。而PACF则可以帮助确定延迟的直接影…...

生活方式对人健康影响非常大 第三篇

身体健康因素中 生活方式占到60% 赶紧去调整自己哪错了 上游的生活方式管理 是药三分毒 药物会影响身体肝肾功能,代谢 所以你要去找上游到底是我哪错了 短板越多 个健康状态越差 饮食管理是生活方式管理中难度最大的 原则1:与基因相对应相平衡 只吃素 会导致大脑萎…...

ubuntu22.04 qemu 安装windows on arm虚拟机

ubuntu22.04 qemu 安装windows on arm虚拟机 iso: https://uupdump.net/ https://massgrave.dev/windows_arm_links vivo driver: https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/archive-virtio/virtio-win-0.1.262-2/ qemu sudo apt update sudo a…...

前端框架的演变与选择

目录 前端框架的演变与选择 1. 什么是前端框架&#xff1f; 2. 前端框架的演变 2.1 早期的Web开发 2.2 JavaScript库的兴起 2.3 MVC架构的引入 3. 现代前端框架概览 3.1 React 3.2 Vue.js 3.3 Angular 4. 其他值得关注的前端框架 4.1 Svelte 4.2 Ember.js 5. 如何…...

Oracle(109)如何管理用户密码策略?

管理用户密码策略是确保数据库安全性的重要措施之一。通过定义和实施密码策略&#xff0c;可以确保用户使用强密码&#xff0c;并定期更新密码&#xff0c;以防止未经授权的访问。以下是如何在 MySQL 和 PostgreSQL 中详细配置和管理用户密码策略的步骤和代码示例。 MySQL 用户…...

【重学MySQL】十三、基本的 select 语句

【重学MySQL】十三、基本的 select 语句 基本结构示例检索所有列检索特定列带有条件的检索dual 列的别名基本的列别名使用别名在表达式中的使用别名在聚合函数中的应用 distinct基本用法注意事项示例 空值参与运算数学运算字符串连接比较运算逻辑运算处理NULL的函数 着重号为什…...

vue3.5新特性整理

本文章介绍vue3.5更新的几个新特性 1.vue中watch中深度监听更新的层级 在之前deep 属性是一个boolean值 我们要监听对象的变化需要使用deep: true 在vue3.5之后 deep 也可以是一个number 表示对象要监听的层级数量 这个功能还是比较实用的 因为层级过深的时候我们可能需要监听…...

RK3588 系列之3—rknn使用过程中遇到的bug

RK3588 系列之3—rknn使用过程中遇到的bug 1.librockchip_mpp.so: file format not recognized&#xff1b; treating as linker scrip2.Could not find a package configuration file provided by "OpenCV" with any of the following names参考文献 1.librockchip_…...

Java中的强引用、软引用、弱引用和虚引用于JVM的垃圾回收机制

参考资料 https://juejin.cn/post/7123853933801373733 在 Java 中&#xff0c;引用类型分为四种&#xff1a;强引用&#xff08;Strong Reference&#xff09;、软引用&#xff08;Soft Reference&#xff09;、弱引用&#xff08;Weak Reference&#xff09;和虚引用&#xf…...

网络协议的基础知识

前言 本文将详细介绍IP地址、端口号、协议、协议分层、封装、分用、客户端、服务器、请求、响应以及两台主机之间的网络通信流程等网络原理知识。 一、IP 地址 概念 IP地址主要用于标识网络中的主机和其他网络设备&#xff08;如路由器&#xff09;的位置。 类似于快递中的…...

Java高级Day37-UDP网络编程

109.netstat指令 netstat -an 可以查看当前主机网络情况&#xff0c;包括端口监听情况和网络连接情况 netstat -an|more 可以分页显示 要求在dos控制台下执行 说明&#xff1a; LISTENING表示某个端口在监听 如果有一个外部程序&#xff08;客户端&#xff09;连接到该端口…...

如何利用ChatGPT提升学术论文讨论部分的撰写质量和效率

大家好,感谢关注。我是七哥,一个在高校里不务正业,折腾学术科研AI实操的学术人。关于使用ChatGPT等AI学术科研的相关问题可以和作者七哥(yida985)交流,多多交流,相互成就,共同进步,为大家带来最酷最有效的智能AI学术科研写作攻略。经过数月爆肝,终于完成学术AI使用教…...