CosyVoice:开源强大的 AI 语音合成工具
在当今科技飞速发展的时代,AI 语音合成技术正逐渐改变着我们的生活。今天,就为大家介绍一款卓越的语音合成工具——CosyVoice。
一、安装步骤
- 克隆和安装:
- 克隆仓库:
git clone --recursive https://github.com/FunAudioLLM/CosyVoice.git
。如果克隆子模块失败,可以运行命令cd CosyVoice; git submodule update --init --recursive
。
- 克隆仓库:
- 安装 Conda:请参考https://docs.conda.io/en/latest/miniconda.html。
- 创建 Conda 环境:
conda create -n cosyvoice python=3.8
。conda activate cosyvoice
。conda install -y -c conda-forge pynini==2.1.5
。pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/ --trusted-host=mirrors.aliyun.com
。
- 解决 sox 兼容性问题:
- Ubuntu:
sudo apt-get install sox libsox-dev
。 - CentOS:
sudo yum install sox sox-devel
。
- Ubuntu:
二、模型下载
强烈建议下载预训练的CosyVoice - 300M
、CosyVoice - 300M - SFT
、CosyVoice - 300M - Instruct
模型和CosyVoice - ttsfrd
资源。
- SDK 模型下载:
from modelscope import snapshot_download snapshot_download('iic/CosyVoice - 300M', local_dir='pretrained_models/CosyVoice - 300M') snapshot_download('iic/CosyVoice - 300M - SFT', local_dir='pretrained_models/CosyVoice - 300M - SFT') snapshot_download('iic/CosyVoice - 300M - Instruct', local_dir='pretrained_models/CosyVoice - 300M - Instruct') snapshot_download('iic/CosyVoice - ttsfrd', local_dir='pretrained_models/CosyVoice - ttsfrd')
- git 模型下载(确保已安装 git lfs):
mkdir -p pretrained_models git clone https://www.modelscope.cn/iic/CosyVoice - 300M.git pretrained_models/CosyVoice - 300M git clone https://www.modelscope.cn/iic/CosyVoice - 300M - SFT.git pretrained_models/CosyVoice - 300M - SFT git clone https://www.modelscope.cn/iic/CosyVoice - 300M - Instruct.git pretrained_models/CosyVoice - 300M - Instruct git clone https://www.modelscope.cn/iic/CosyVoice - ttsfrd.git pretrained_models/CosyVoice - ttsfrd
- 可选步骤:解压
ttsfrd
资源并安装ttsfrd
包以获得更好的文本归一化性能,但这不是必需的。若不安装,将默认使用WeTextProcessing
。cd pretrained_models/CosyVoice - ttsfrd/ unzip resource.zip -d. pip install ttsfrd - 0.3.6 - cp38 - cp38 - linux_x86_64.whl
三、基本用法
- 对于不同的推理需求选择不同的模型:
- 零样本/跨语言推理,请使用
CosyVoice - 300M
模型。 - SFT 推理,请使用
CosyVoice - 300M - SFT
模型。 - 指令推理,请使用
CosyVoice - 300M - Instruct
模型。
- 零样本/跨语言推理,请使用
- 首先,将
third_party/Matcha - TTS
添加到PYTHONPATH
。export PYTHONPATH=third_party/Matcha - TTS
- 示例代码:
from cosyvoice.cli.cosyvoice import CosyVoice from cosyvoice.utils.file_utils import load_wav import torchaudiocosyvoice = CosyVoice('pretrained_models/CosyVoice - 300M - SFT') # sft usage print(cosyvoice.list_avaliable_spks()) # change stream=True for chunk stream inference for i, j in enumerate(cosyvoice.inference_sft('你好,我是通义生成式语音大模型,请问有什么可以帮您的吗?', '中文女', stream=False)):torchaudio.save('sft_{}.wav'.format(i), j['tts_speech'], 22050)cosyvoice = CosyVoice('pretrained_models/CosyVoice - 300M') # zero_shot usage, <|zh|><|en|><|jp|><|yue|><|ko|> for Chinese/English/Japanese/Cantonese/Korean prompt_speech_16k = load_wav('zero_shot_prompt.wav', 16000) for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', prompt_speech_16k, stream=False)):torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], 22050) # cross_lingual usage prompt_speech_16k = load_wav('cross_lingual_prompt.wav', 16000) for i, j in enumerate(cosyvoice.inference_cross_lingual('<|en|>And then later on, fully acquiring that company. So keeping management in line, interest in line with the asset that\'s coming into the family is a reason why sometimes we don\'t buy the whole thing.', prompt_speech_16k, stream=False)):torchaudio.save('cross_lingual_{}.wav'.format(i), j['tts_speech'], 22050)cosyvoice = CosyVoice('pretrained_models/CosyVoice - 300M - Instruct') # instruct usage, support <laughter></laughter><strong></strong>[laughter][breath] for i, j in enumerate(cosyvoice.inference_instruct('在面对挑战时,他展现了非凡的<strong>勇气</strong>与<strong>智慧</strong>。', '中文男', 'Theo \'Crimson\', is a fiery, passionate rebel leader. Fights with fervor for justice, but struggles with impulsiveness.', stream=False)):torchaudio.save('instruct_{}.wav'.format(i), j['tts_speech'], 22050)
四、启动 Web 演示
可以使用 Web 演示页面快速熟悉 CosyVoice,支持 sft/零样本/跨语言/指令推理。具体详情请参考演示网站。
示例命令:python3 webui.py --port 50000 --model_dir pretrained_models/CosyVoice - 300M
(可根据需要更改模型)。
五、高级用法
对于高级用户,examples/libritts/cosyvoice/run.sh
中提供了训练和推理脚本,可以按照此示例熟悉 CosyVoice。
六、构建用于部署
若要使用 grpc 进行服务部署,可执行以下步骤,否则可忽略此步骤。
- 构建 docker 镜像:
cd runtime/python docker build -t cosyvoice:v1.0.
- 运行 docker 容器(根据需要选择推理模式):
- grpc 用法:
docker run -d --runtime=nvidia -p 50000:50000 cosyvoice:v1.0 /bin/bash -c "cd /opt/CosyVoice/CosyVoice/runtime/python/grpc && python3 server.py --port 50000 --max_conc 4 --model_dir iic/CosyVoice - 300M && sleep infinity" cd grpc && python3 client.py --port 50000 --mode <sft|zero_shot|cross_lingual|instruct>
- fastapi 用法:
docker run -d --runtime=nvidia -p 50000:50000 cosyvoice:v1.0 /bin/bash -c "cd /opt/CosyVoice/CosyVoice/runtime/python/fastapi && python3 server.py --port 50000 --model_dir iic/CosyVoice - 300M && sleep infinity" cd fastapi && python3 client.py --port 50000 --mode <sft|zero_shot|cross_lingual|instruct>
- grpc 用法:
CosyVoice 以其强大的功能和灵活的使用方式,为我们带来了全新的语音合成体验。快来尝试吧!
相关文章:

CosyVoice:开源强大的 AI 语音合成工具
在当今科技飞速发展的时代,AI 语音合成技术正逐渐改变着我们的生活。今天,就为大家介绍一款卓越的语音合成工具——CosyVoice。 一、安装步骤 克隆和安装: 克隆仓库:git clone --recursive https://github.com/FunAudioLLM/Cos…...

【靶场】Pikachu—XSS Cross-Site Scripting(前五关)
🏘️个人主页: 点燃银河尽头的篝火(●’◡’●) 如果文章有帮到你的话记得点赞👍收藏💗支持一下哦 【靶场】Pikachu—XSS Cross-Site Scripting(前五关) 第一关 反射型xss(get)第二关 反射型xss(post)第三关…...

Dance with Compiler - EP2
今天来熟悉汇编指令。 基本指令特点 str: store value to memory ldr: load value from memory stp: store register value to stack ldp: load stack value to register 更新寄存器的操作,一般结果寄存器是左操作数。 写内存的操作(str)&…...
微博视频无水印下载的方法
在如今的数字时代,社交媒体平台如微博已经成为人们分享日常生活、获取新闻和娱乐内容的重要渠道。我们时常会在刷微博时看到一些有趣的视频图片,或是名人的访谈,或是搞笑的短片,有时甚至是一些珍贵的历史资料。这些视频不仅内容丰…...

C语言 | Leetcode C语言题解之第390题消除游戏
题目: 题解: int lastRemaining(int n) {int a1 1;int k 0, cnt n, step 1;while (cnt > 1) {if (k % 2 0) { // 正向a1 a1 step;} else { // 反向a1 (cnt % 2 0) ? a1 : a1 step;}k;cnt cnt >> 1;step step << 1;}return …...

虚拟现实辅助工程技术助力多学科协同评估
在当今高速发展的经济环境中,制造业面临着多重挑战,包括提高产品性能、压缩设计周期、实现轻量化设计和降低成本。为了有效应对这些挑战,多学科协同评估成为缩短研发周期和提升研制质量的关键手段。 传统的多学科评估面临着数据孤立与融合困难…...

Java获取小程序码示例(三种小程序码)
首先我们可以看到官方文档上是有三种码的 获取小程序码 这里特别要注意的是第一种和第三种是有数量限制的,所以大家生成的时候记得保存,也不要一直瞎生成 还有一点要注意的是第一种和第二种是太阳码 第三种是方形码 好了直接上代码 这里要注意ÿ…...

【最新华为OD机试E卷-支持在线评测】分糖果(100分)-多语言题解-(Python/C/JavaScript/Java/Cpp)
🍭 大家好这里是春秋招笔试突围 ,一枚热爱算法的程序员 ✨ 本系列打算持续跟新华为OD-E/D卷的三语言AC题解 💻 ACM金牌🏅️团队| 多次AK大厂笔试 | 编程一对一辅导 👏 感谢大家的订阅➕ 和 喜欢💗 🍿 最新华为OD机试D卷目录,全、新、准,题目覆盖率达 95% 以上,…...

Windows下Python和PyCharm的应用(二)__快捷键方式的设定
前言 程序写久了,难免会形成自己的编程习惯。比如对某一套快捷键的使用,已经形成了肌肉记忆。 为了方便快捷键的使用,可以在PyCharm中设置自己喜欢的快捷键。 我比较习惯于微软Visual Studio的快捷键设置。(因为早些年VC开发用的…...

网络安全宗旨和目标
网络安全涉及网络和相关数据及信息的保护与保障。它已从物理技术发展到防病毒和反网络钓鱼平台等软件方法。 在本章中,我们将详细讨论网络安全的主要目标和原则,并提供与之相关的具体示例。所以,让我们从网络安全的目标开始。 网络安全的目的…...

stm32之软件SPI读写W25Q64存储器应用案例
系列文章目录 1. stm32之SPI通信协议 文章目录 系列文章目录前言一、电路接线图二、应用案例代码三、应用案例分析3.1 SPI通信模块3.2 W25Q64模块3.3 主程序 前言 提示:本文主要用作在学习江科大自化协STM32入门教程后做的归纳总结笔记,旨在学习记录&a…...
Python数据验证库schema
目录 一、简述 二、安装schema库 三、使用 基本概念 代码示例 简单使用 列表验证 正则表达式 一、简述 schema用于简化数据验证的过程。它提供了一种简单的方式来定义数据结构,并验证传入的数据是否符合预期的结构。schema 库非常适合用于 Web 应用的请求验…...
python数据类型与运算符
1、数据类型 (1)Python中提供了基本数据类型: 数值类型:int整数类型、float浮点数类型、complex复数类型 布尔类型:bool,取值True / False 字符串:单引号包含、双引号包含、三对单引号/双引号…...
加密解密工具类
加密解密工具类 package com.example.modules.util;import javax.crypto.Cipher; import javax.crypto.KeyGenerator; import javax.crypto.SecretKey; import javax.crypto.spec.SecretKeySpec; import java.security.SecureRandom; import java.util.Base64; public…...
validationtools中按键测试选项光标移除
最近处理一个问题,设备有方向键盘,做cit中的按键测试,发现按方向键第一次按键不能触发该键值,而是让屏幕第一个按钮获取焦点,然后再次按键,则其他正常。问题:进入界面第一次按键就要响应对应按键…...

【Hot100算法刷题集】哈希-02-字母异位词分组(含排序构造键、自定义键、自定义哈希函数法)
🏠关于专栏:专栏用于记录LeetCode中Hot100专题的所有题目 🎯每日努力一点点,技术变化看得见 题目转载 题目描述 🔒link->题目跳转链接 给你一个字符串数组,请你将 字母异位词 组合在一起。可以按任意顺…...

用华为智驾,开启MPV的下半场
作者 |老缅 编辑 |德新 8月28日,岚图正式对外公布了全球首款搭载华为乾崑智驾和鸿蒙座舱的MPV——全新岚图梦想家。 新车定位「全景豪华科技旗舰MPV」,全系标配四驱,分为四驱鲲鹏版和四驱乾崑版。 其中岚图逍遥座舱和鲲鹏智驾构成的鲲鹏版…...
发烧时眼睛胀痛的多种原因
发烧时眼睛胀痛的多种原因 发烧时眼睛胀痛可能由多种原因引起,主要包括以下几个方面: 上呼吸道感染: 发烧通常由上呼吸道感染引起,如感冒等。这些疾病多由病毒或细菌感染导致,如流感病毒、副流感病毒、腺病毒等。当机…...
用ACF和PACF计算出一堆数据的周期个数以及周期时长,数据分析python
具体步骤 1使用ACF和PACF:可以通过查看ACF图中的周期性峰值,找到数据中的周期性。如果ACF图在某个滞后期处出现显著的正相关峰值,并且这种模式在多个滞后周期中重复出现,这就是周期性信号的特征。而PACF则可以帮助确定延迟的直接影…...

生活方式对人健康影响非常大 第三篇
身体健康因素中 生活方式占到60% 赶紧去调整自己哪错了 上游的生活方式管理 是药三分毒 药物会影响身体肝肾功能,代谢 所以你要去找上游到底是我哪错了 短板越多 个健康状态越差 饮食管理是生活方式管理中难度最大的 原则1:与基因相对应相平衡 只吃素 会导致大脑萎…...

STM32标准库-DMA直接存储器存取
文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA(Direct Memory Access)直接存储器存取 DMA可以提供外设…...
Swagger和OpenApi的前世今生
Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章,二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑: 🔄 一、起源与初创期:Swagger的诞生(2010-2014) 核心…...

dify打造数据可视化图表
一、概述 在日常工作和学习中,我们经常需要和数据打交道。无论是分析报告、项目展示,还是简单的数据洞察,一个清晰直观的图表,往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server,由蚂蚁集团 AntV 团队…...

初学 pytest 记录
安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...

ABAP设计模式之---“简单设计原则(Simple Design)”
“Simple Design”(简单设计)是软件开发中的一个重要理念,倡导以最简单的方式实现软件功能,以确保代码清晰易懂、易维护,并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计,遵循“让事情保…...

R语言速释制剂QBD解决方案之三
本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...

WPF八大法则:告别模态窗口卡顿
⚙️ 核心问题:阻塞式模态窗口的缺陷 原始代码中ShowDialog()会阻塞UI线程,导致后续逻辑无法执行: var result modalWindow.ShowDialog(); // 线程阻塞 ProcessResult(result); // 必须等待窗口关闭根本问题:…...
pycharm 设置环境出错
pycharm 设置环境出错 pycharm 新建项目,设置虚拟环境,出错 pycharm 出错 Cannot open Local Failed to start [powershell.exe, -NoExit, -ExecutionPolicy, Bypass, -File, C:\Program Files\JetBrains\PyCharm 2024.1.3\plugins\terminal\shell-int…...
云原生周刊:k0s 成为 CNCF 沙箱项目
开源项目推荐 HAMi HAMi(原名 k8s‑vGPU‑scheduler)是一款 CNCF Sandbox 级别的开源 K8s 中间件,通过虚拟化 GPU/NPU 等异构设备并支持内存、计算核心时间片隔离及共享调度,为容器提供统一接口,实现细粒度资源配额…...

保姆级【快数学会Android端“动画“】+ 实现补间动画和逐帧动画!!!
目录 补间动画 1.创建资源文件夹 2.设置文件夹类型 3.创建.xml文件 4.样式设计 5.动画设置 6.动画的实现 内容拓展 7.在原基础上继续添加.xml文件 8.xml代码编写 (1)rotate_anim (2)scale_anim (3)translate_anim 9.MainActivity.java代码汇总 10.效果展示 逐帧…...