用ACF和PACF计算出一堆数据的周期个数以及周期时长,数据分析python
具体步骤
1使用ACF和PACF:可以通过查看ACF图中的周期性峰值,找到数据中的周期性。如果ACF图在某个滞后期处出现显著的正相关峰值,并且这种模式在多个滞后周期中重复出现,这就是周期性信号的特征。而PACF则可以帮助确定延迟的直接影响。
2找周期数和周期长度:周期的时长可以通过ACF中第一个显著的峰值(排除滞后期为0时的峰值)来确定,而周期的个数则可以通过分析整个序列中的周期性重复次数来估计。
下面是一个使用 statsmodels 库来计算并绘制ACF和PACF,并分析周期的Python代码。
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
from statsmodels.tsa.stattools import acf, pacf# 生成模拟数据或导入真实数据
# 假设你的数据是一个时间序列 DataFrame 或 NumPy 数组
# data = pd.read_csv('your_data.csv') # 你的真实数据
data = np.sin(np.linspace(0, 10 * np.pi, 500)) # 模拟数据# 绘制ACF和PACF
fig, ax = plt.subplots(2, 1, figsize=(10, 8))# ACF图
plot_acf(data, lags=50, ax=ax[0])
ax[0].set_title('Autocorrelation (ACF)')# PACF图
plot_pacf(data, lags=50, ax=ax[1])
ax[1].set_title('Partial Autocorrelation (PACF)')plt.tight_layout()
plt.show()# 计算ACF和PACF值
acf_values = acf(data, nlags=50)
pacf_values = pacf(data, nlags=50)# 寻找周期长度
def find_period(acf_values):# 查找第一个显著峰值的位置作为周期for lag in range(1, len(acf_values)):if acf_values[lag] > 0.5: # 设定一个阈值,例如0.5,可以调整return lagreturn Noneperiod = find_period(acf_values)
print(f"Detected period length: {period}")
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
from statsmodels.tsa.stattools import acf, pacf# 生成模拟数据或导入真实数据
data = np.sin(np.linspace(0, 20 * np.pi, 1000)) # 生成正弦波数据,假设有多个周期# 绘制ACF和PACF
fig, ax = plt.subplots(2, 1, figsize=(10, 8))# ACF图
plot_acf(data, lags=100, ax=ax[0])
ax[0].set_title('Autocorrelation (ACF)')# PACF图
plot_pacf(data, lags=100, ax=ax[1])
ax[1].set_title('Partial Autocorrelation (PACF)')plt.tight_layout()
plt.show()# 计算ACF值
acf_values = acf(data, nlags=100)# 寻找周期长度函数
def find_period(acf_values, threshold=0.5):# 查找第一个显著峰值的位置作为周期长度for lag in range(1, len(acf_values)):if acf_values[lag] > threshold: # 使用阈值筛选显著峰值return lagreturn None# 确定周期长度
period_length = find_period(acf_values)
print(f"Detected period length: {period_length}")# 计算周期个数
if period_length:total_data_points = len(data)num_periods = total_data_points // period_lengthprint(f"Detected number of periods: {num_periods}")
else:print("No significant period detected.")
相关文章:
用ACF和PACF计算出一堆数据的周期个数以及周期时长,数据分析python
具体步骤 1使用ACF和PACF:可以通过查看ACF图中的周期性峰值,找到数据中的周期性。如果ACF图在某个滞后期处出现显著的正相关峰值,并且这种模式在多个滞后周期中重复出现,这就是周期性信号的特征。而PACF则可以帮助确定延迟的直接影…...

生活方式对人健康影响非常大 第三篇
身体健康因素中 生活方式占到60% 赶紧去调整自己哪错了 上游的生活方式管理 是药三分毒 药物会影响身体肝肾功能,代谢 所以你要去找上游到底是我哪错了 短板越多 个健康状态越差 饮食管理是生活方式管理中难度最大的 原则1:与基因相对应相平衡 只吃素 会导致大脑萎…...

ubuntu22.04 qemu 安装windows on arm虚拟机
ubuntu22.04 qemu 安装windows on arm虚拟机 iso: https://uupdump.net/ https://massgrave.dev/windows_arm_links vivo driver: https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/archive-virtio/virtio-win-0.1.262-2/ qemu sudo apt update sudo a…...
前端框架的演变与选择
目录 前端框架的演变与选择 1. 什么是前端框架? 2. 前端框架的演变 2.1 早期的Web开发 2.2 JavaScript库的兴起 2.3 MVC架构的引入 3. 现代前端框架概览 3.1 React 3.2 Vue.js 3.3 Angular 4. 其他值得关注的前端框架 4.1 Svelte 4.2 Ember.js 5. 如何…...
Oracle(109)如何管理用户密码策略?
管理用户密码策略是确保数据库安全性的重要措施之一。通过定义和实施密码策略,可以确保用户使用强密码,并定期更新密码,以防止未经授权的访问。以下是如何在 MySQL 和 PostgreSQL 中详细配置和管理用户密码策略的步骤和代码示例。 MySQL 用户…...

【重学MySQL】十三、基本的 select 语句
【重学MySQL】十三、基本的 select 语句 基本结构示例检索所有列检索特定列带有条件的检索dual 列的别名基本的列别名使用别名在表达式中的使用别名在聚合函数中的应用 distinct基本用法注意事项示例 空值参与运算数学运算字符串连接比较运算逻辑运算处理NULL的函数 着重号为什…...
vue3.5新特性整理
本文章介绍vue3.5更新的几个新特性 1.vue中watch中深度监听更新的层级 在之前deep 属性是一个boolean值 我们要监听对象的变化需要使用deep: true 在vue3.5之后 deep 也可以是一个number 表示对象要监听的层级数量 这个功能还是比较实用的 因为层级过深的时候我们可能需要监听…...

RK3588 系列之3—rknn使用过程中遇到的bug
RK3588 系列之3—rknn使用过程中遇到的bug 1.librockchip_mpp.so: file format not recognized; treating as linker scrip2.Could not find a package configuration file provided by "OpenCV" with any of the following names参考文献 1.librockchip_…...

Java中的强引用、软引用、弱引用和虚引用于JVM的垃圾回收机制
参考资料 https://juejin.cn/post/7123853933801373733 在 Java 中,引用类型分为四种:强引用(Strong Reference)、软引用(Soft Reference)、弱引用(Weak Reference)和虚引用…...
网络协议的基础知识
前言 本文将详细介绍IP地址、端口号、协议、协议分层、封装、分用、客户端、服务器、请求、响应以及两台主机之间的网络通信流程等网络原理知识。 一、IP 地址 概念 IP地址主要用于标识网络中的主机和其他网络设备(如路由器)的位置。 类似于快递中的…...

Java高级Day37-UDP网络编程
109.netstat指令 netstat -an 可以查看当前主机网络情况,包括端口监听情况和网络连接情况 netstat -an|more 可以分页显示 要求在dos控制台下执行 说明: LISTENING表示某个端口在监听 如果有一个外部程序(客户端)连接到该端口…...
如何利用ChatGPT提升学术论文讨论部分的撰写质量和效率
大家好,感谢关注。我是七哥,一个在高校里不务正业,折腾学术科研AI实操的学术人。关于使用ChatGPT等AI学术科研的相关问题可以和作者七哥(yida985)交流,多多交流,相互成就,共同进步,为大家带来最酷最有效的智能AI学术科研写作攻略。经过数月爆肝,终于完成学术AI使用教…...

谷歌seo网址如何快速被收录?
想让你的网站快速被搜索引擎收录,可以采取几种不同的策略。首先,确保你的网站内容丰富、有价值,搜索引擎更喜欢收录内容质量高的网站。同时,增强网站的外链建设,做好这些站内优化,接下来就是通过谷歌搜索控…...

自动驾驶---什么是Frenet坐标系?
1 背景 为什么提出Frenet坐标系?Frenet坐标系的提出主要是为了解决自动驾驶系统在路径规划的问题,它基于以下几个原因: 符合人类的驾驶习惯: 人类驾驶员在驾驶过程中,通常不会关心自己距离起点的横向和纵向距离&#x…...
如何编写Linux PCI设备驱动器 之一
如何编写Linux PCI设备驱动器 之一 PCI寻址PCI驱动器使用的APIpci_register_driver()pci_driver结构pci_device_id结构 如何查找PCI设备存取PCI配置空间读配置空间APIs写配置空间APIswhere的常量值共用部分类型0类型1 PCI总线通过使用比ISA更高的时钟速率来实现更好的性能&…...

梯度弥散问题及解决方法
梯度弥散问题及解决方法 简要阐述梯度弥散发生的原因以及现象针对不同发生原因有什么解决方案1. 使用ReLU及其变体激活函数2. 权重初始化3. 批量归一化(Batch Normalization)4. 残差连接(Residual Connections)5. 梯度裁剪(Gradient Clipping)简要阐述梯度弥散发生的原因…...

Python中pickle文件操作及案例-学习篇
一、简介 Pickle 算是Python的一种数据序列化方法,它能够将对象转换为字节流,进而可以保存到文件中或通过网络传输给其他Python程序。这种方式非常适合快速简便地保存复杂的数据结构,例如列表、字典、自定义对象等。 二、pickle文件的读写 …...

微服务日常总结
1.当我们在开发中,需要连接多个库时,可以在yml中进行配置。 当在查询的时候,跨库时,需要通过DS 注解来指定,需要yml配置需要保持一致。 2. 当我们想把数据存入到clob类型中,需要再字段 的占位符后面加上j…...

C和C++内存管理
C和C内存管理 (一)C/C内存分布(二)C语言动态内存管理(三)c内存管理(3.1)new/delete操作内置类型(3.2)new和delete操作自定义类型 (四)…...
axios取消请求
1.使用CancelToken: class RequestHttp {service: AxiosInstance;public constructor(config: AxiosRequestConfig) {// 实例化axiosthis.service axios.create(config);/*** description 请求拦截器* 客户端发送请求 -> [请求拦截器] -> 服务器*/this.service.interce…...
[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解
突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 安全措施依赖问题 GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...
C++:std::is_convertible
C++标志库中提供is_convertible,可以测试一种类型是否可以转换为另一只类型: template <class From, class To> struct is_convertible; 使用举例: #include <iostream> #include <string>using namespace std;struct A { }; struct B : A { };int main…...
STM32+rt-thread判断是否联网
一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...
基础测试工具使用经验
背景 vtune,perf, nsight system等基础测试工具,都是用过的,但是没有记录,都逐渐忘了。所以写这篇博客总结记录一下,只要以后发现新的用法,就记得来编辑补充一下 perf 比较基础的用法: 先改这…...

【Java_EE】Spring MVC
目录 Spring Web MVC 编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 编辑参数重命名 RequestParam 编辑编辑传递集合 RequestParam 传递JSON数据 编辑RequestBody …...

微信小程序云开发平台MySQL的连接方式
注:微信小程序云开发平台指的是腾讯云开发 先给结论:微信小程序云开发平台的MySQL,无法通过获取数据库连接信息的方式进行连接,连接只能通过云开发的SDK连接,具体要参考官方文档: 为什么? 因为…...
C#学习第29天:表达式树(Expression Trees)
目录 什么是表达式树? 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持: 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...
为什么要创建 Vue 实例
核心原因:Vue 需要一个「控制中心」来驱动整个应用 你可以把 Vue 实例想象成你应用的**「大脑」或「引擎」。它负责协调模板、数据、逻辑和行为,将它们变成一个活的、可交互的应用**。没有这个实例,你的代码只是一堆静态的 HTML、JavaScript 变量和函数,无法「活」起来。 …...
libfmt: 现代C++的格式化工具库介绍与酷炫功能
libfmt: 现代C的格式化工具库介绍与酷炫功能 libfmt 是一个开源的C格式化库,提供了高效、安全的文本格式化功能,是C20中引入的std::format的基础实现。它比传统的printf和iostream更安全、更灵活、性能更好。 基本介绍 主要特点 类型安全:…...

DBLP数据库是什么?
DBLP(Digital Bibliography & Library Project)Computer Science Bibliography是全球著名的计算机科学出版物的开放书目数据库。DBLP所收录的期刊和会议论文质量较高,数据库文献更新速度很快,很好地反映了国际计算机科学学术研…...