《OpenCV计算机视觉》—— 图像轮廓检测与绘制
文章目录
- 一、轮廓的检测
- 二、轮廓的绘制
- 图像轮廓检测与绘制的代码实现
- 三、轮廓的近似
一、轮廓的检测
- 轮廓检测是指在包含目标和背景的数字图像中,忽略背景和目标内部的纹理以及噪声干扰的影响,采用一定的技术和方法来实现目标轮廓提取的过程
- 注意:做轮廓检测前需要将图片读取为二值数据,即像素值只为0和255
- 轮廓检测所用到的函数为 cv2.findcontours(img, mode, method)
- 参数介绍:
- image:需要实现轮廓检测的原图
- mode:轮廓的检索模式,主要有四种方式:
- CV2.RETR_EXTERNAL:只检测外轮廓,所有子轮廓被忽略
- CV2.RETR_LIST:检测的轮廓不建立等级关系,所有轮廓属于同一等级。
- CV2.RETR_CCOMP: 检索所有的轮廓,并建立一个两级层次结构,其中上面的一层为外边界,里面的一层为内孔的边界轮廓。
- CV2.RETR_TREE:返回所有的轮廓,建立一个完整的组织结构的轮廓。
- method:轮廓的近似方法,主要有以下两种:
- CV2.CHAIN_APPROX_NONE:存储所有的轮廓点。
- CV2.CHAIN_APPROX_SIMPLE:压缩模式,只保留该方向的终点坐标,例如一个矩形轮廓只需4个点来保存轮廊信息。
- 返回的参数:image,contours,hierarchy
- image:返回处理的原图(在 OpenCV 4.x 中这个返回值已经被移除)
- contours:包含图像中所有轮廓的list对象。其中每一个独立的轮廓信息以边界点坐标(x,y)的形式储存在numpy数组中。
- hierarchy:轮廓的层次结构。一个包含4个值的数组:[Next,Previous,First child,Parent]
- Next:与当前轮廓处于同一层级的下一条轮廓
- Previous:与当前轮廓处于同一层级的上一条轮廓
- First Child:当前轮廓的第一条子轮廓
- Parent:当前轮廓的父轮廓
二、轮廓的绘制
- cv2.drawContours()函数是用于在图像上绘制轮廓
- 参数介绍:cv2.drawContours(image, contours, contourIdx, color, thickness=None
lineType=None, hierarchy=None, maxLevel=None, offset=None)- image:要在其上绘制轮廓的输入图像(在原图中画)。
- contours:轮廓列表,通常由cv2.findContours()函数返回。
- contourIdx:要绘制的轮廓的索引。如果为负数,则绘制所有轮廓。–> -1
- color:轮廓的颜色,以BGR格式表示。例如,(0,255,0)表示绿色。
- thickness:轮廓线的粗细,默认值为1。
- lineType:轮廓线的类型。默认值为cV2.LINE_8
- hierarchy:轮廓层次结构。通常由cv2.findContours()函数返回.
- maxLevel:绘制的最大轮廓层级。默认值为None,表示绘制所有层级。
- offset:轮廓点的偏移量。默认值为None。
图像轮廓检测与绘制的代码实现
import cv2# 读取图片
phone = cv2.imread('phone.png')
phone_gray = cv2.cvtColor(phone, cv2.COLOR_BGR2GRAY) # 转换为灰度图# 阙值处理为二值(黑白图像)
ret, phone_binary = cv2.threshold(phone_gray, 120, 255, cv2.THRESH_BINARY)
# 查找图像轮廓 cv2.RETR_LIST --> 查找所有轮廓,且不建立等级关系
_, contours, hierarchy = cv2.findContours(phone_binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)
# 查看轮廓的层次结构
print(hierarchy)
# 查看一共有多少的轮廓
print(len(contours))# 绘制所有的轮廓
Contours_show = cv2.drawContours(phone, contours=contours, contourIdx=-1, color=(0, 255, 0), thickness=3)# 显示灰度图和在原图中绘出轮廓后的图
cv2.imshow('phone_gray', phone_gray)
cv2.imshow('Contours_show', Contours_show)# 等待任意键按下后关闭所有窗口
cv2.waitKey(0)
cv2.destroyAllWindows()
- 结果如下
三、轮廓的近似
-
轮廓的近似是计算机视觉和图像处理中的一个常用技术。它可以帮助我们简化轮廓的形状,去除一些不必要的细节,同时保持轮廓的主要形状特征。
-
在OpenCV中,可以使用cv2.approxPolyDP()函数来近似一个轮廓。这个函数基于 Douglas-Peucker 算法,该算法通过迭代的方式简化轮廓的顶点集合,以生成一个近似于原始轮廓的多边形,但顶点数量更少。这在处理图像中的形状时非常有用,特别是当你想要去除轮廓上的小噪点或不必要的细节,同时保留其主要形状特征时。
-
参数解释:cv2.approxPolyDP(curve, epsilon, closed)
- curve:输入轮廓,通常是一个由点组成的 NumPy 数组,这些点定义了轮廓的形状。
- epsilon:近似的精度参数。它是原始轮廓到近似多边形之间的最大距离。较小的 epsilon 值意味着近似多边形将更接近原始轮廓,但可能会包含更多的顶点。较大的 epsilon 值会导致生成一个更简单的多边形,但可能会丢失一些细节。
- closed:一个布尔值,指定近似多边形是否应该是封闭的。如果为 True,则函数将确保近似多边形是封闭的,即第一个和最后一个顶点将相同。
-
返回值 approx 是一个新的 NumPy 数组,包含了近似多边形的顶点。
-
代码实现
import cv2# 读取图像 he = cv2.imread('he.png')# 转换为灰度图像 he_gray = cv2.cvtColor(he, cv2.COLOR_BGR2GRAY)# 应用阈值处理 ret, he_thresh = cv2.threshold(he_gray, 120, 255, cv2.THRESH_BINARY)# 查找轮廓 _, contours, hierarchy = cv2.findContours(he_thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)# 创建一个新图像用于绘制轮廓 he_new = he.copy()# 遍历所有轮廓 for cnt in contours:# 轮廓近似# cv2.arcLength()函数用于计算轮廓的周长(近似的精度设置为周长的0.2%)epsilon = 0.002 * cv2.arcLength(cnt, True) # 可以调整epsilon的值以获得不同的近似精度approx = cv2.approxPolyDP(cnt, epsilon, True)# 绘制近似后的轮廓cv2.drawContours(he_new, [approx], 0, (0, 255, 0), 3)# 显示原始图像和带有轮廓的图像 cv2.imshow('Original Image', he) cv2.imshow('Image with Contours', he_new)# 等待任意键按下后关闭所有窗口 cv2.waitKey(0) cv2.destroyAllWindows()
- 结果如下
- 由结果可以看出轮廓的近似结果就是一个近似于原始轮廓的多边行。
- 结果如下
相关文章:

《OpenCV计算机视觉》—— 图像轮廓检测与绘制
文章目录 一、轮廓的检测二、轮廓的绘制图像轮廓检测与绘制的代码实现 三、轮廓的近似 一、轮廓的检测 轮廓检测是指在包含目标和背景的数字图像中,忽略背景和目标内部的纹理以及噪声干扰的影响,采用一定的技术和方法来实现目标轮廓提取的过程注意:做轮…...

Spark-Yarn模式如何配置历史服务器
在Spark程序结束之后我们也想看到运行过程怎么办? Yarn模式下,通过以下步骤配置历史服务器即可: mv spark-defaults.conf.template spark-defaults.conf修改spark-default.conf 文件,配置日志存储路径 spark.eventLog.enabled true spark.…...

Maven的安装
一、安装 压缩包解压完的目录如下所示(此处为绿色免安装版): (其余三个文件是针对Maven版本,第三方软件等简要介绍) 二、环境变量 前提: jdk最低版本为JAVA7(即jdk17)…...

iOS——APP启动流程
APP启动 APP启动主要分为两个阶段:pre-main和main之后,而APP的启动优化也主要是在这两个阶段进行的。 main之后的优化:1. 减少不必要的任务,2.必要的任务延迟执行,例如放在控制器界面等等。 APP启动的大致过程&#…...

LLM模型:代码讲解Transformer运行原理
视频讲解、获取源码:LLM模型:代码讲解Transformer运行原理(1)_哔哩哔哩_bilibili 1 训练保存模型文件 2 模型推理 3 推理代码 import torch import tiktoken from wutenglan_model import WutenglanModelimport pyttsx3# 设置设备为CUDA(如果…...

虚幻引擎VR游戏开发02 | 性能优化设置
常识:VR需要保持至少90 FPS的刷新率,以避免用户体验到延迟或晕眩感。以下是优化性能的一系列设置(make sure the frame rate does not drop below a certain threshold) In project setting-> (以下十个设置都在pr…...

Web应用监控:URL事务监测指标解读
监控易是一款功能强大的IT监控软件,它能够实时监控各种IT资源和应用的运行状态,确保业务的连续性和稳定性。在Web应用监控方面,监控易提供了URL事务监测功能,通过模拟用户访问流程,监测整个事务的执行过程和性能表现。…...

redis之缓存淘汰策略
1.查看redis的最大占用内存 使用redis-cli命令连接redis服务端,输入命令:config get maxmemory 输出的值为0,0代表redis的最大占用内存等同于服务器的最大内存。 2.设置redis的最大占用内存 编辑redis的配置文件,并重启redis服务…...

CMake/C++:一个日志库spdlog
项目仓库 GitHub - gabime/spdlog: Fast C logging library.Fast C logging library. Contribute to gabime/spdlog development by creating an account on GitHub.https://github.com/gabime/spdlog 知乎参考贴 https://zhuanlan.zhihu.com/p/674073158 先将仓库clone一下 然…...
rig——管理不同R语言版本的工具
在Python中,我可以用Conda去管理多个版本的Python,包括一些Python模块,因此想在R语言中也找一个类似的工具。 之前在Mac上,有一个名为 Rswitch 的R语言版本管理工具,可以管理不同版本的R以及相应的R包。 现在想在Win…...
Java内存模型详解
1. 引言 在Java中,内存模型是非常重要的概念,它涉及到线程之间如何共享数据以及保证数据的一致性。了解Java内存模型对于开发高质量的多线程程序是至关重要的。 本篇博客将详细介绍Java内存模型的概念、原则、规则以及相关的概念和术语。同时ÿ…...

空气能热泵热水器
空气能热泵热水器压缩机把低温低压气态冷媒转换成高压高温气态,压缩机压缩功能转化的热量为q1,高温高压的气态冷媒与水进行热交换,高压的冷媒在常温下被冷却、冷凝为液态。这过程中,冷媒放出热量用来加热水,使水升温变…...

计算机毕业设计选题推荐-消防站管理系统-社区消防管理系统-Java/Python项目实战
✨作者主页:IT毕设梦工厂✨ 个人简介:曾从事计算机专业培训教学,擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。 ☑文末获取源码☑ 精彩专栏推荐⬇⬇⬇ Java项目 Py…...

移动UI:新手指引页面,跟着指引不迷路。
移动端新手指引在提供用户引导、提升用户体验、提高用户留存率、促进功能使用和降低用户流失率方面都有积极的作用。 移动端新手指引在应用程序或移动网站中有以下几个作用: 1. 提供用户引导: 新手指引可以帮助用户快速了解应用程序或移动网站的功能和…...

数据库MySQL基础
目录 一、数据库的介绍 1.数据库概述 (1)数据的存储方式 (2)数据库 2.常见数据库排行榜 二、数据库的安装与卸载 1.数据库的安装 2.数据库的卸载 三、数据库服务的启动与登录 1.Windows 服务方式启动 (1&…...

AUTOSAR_EXP_ARAComAPI的5章笔记(3)
5.3.4 Finding Services Proxy Class提供类(静态)方法来查找“连接”的服务实例。由于服务实例的可用性本质上是动态的(因为它有一个生命周期),所以ara::com提供了如下两种不同的方法来实现“FindService ”: StartFindService是一个类方法,它在后台启…...

【Godot4.3】基于纯绘图函数自定义的线框图控件
概述 同样是来自2023年7月份的一项实验性工作,基于纯绘图函数扩展的一套线框图控件。初期只实现了三个组件,矩形、占位框和垂直滚动条。 本文中的三个控件类已经经过了继承化的修改,使得代码更少。它们的继承关系如下: 源代码 W…...

申万宏源证券完善金融服务最后一公里闭环,让金融服务“零距离、全天候”
在数字化转型的浪潮中,申万宏源作为金融行业的先锋,持续探索科技如何赋能金融服务,以提升企业效率并优化客户服务体验。面对日益增长的视频化需求,传统的图文形式已难以满足市场与用户的新期待。为了应对这一挑战,申万…...

无需更换摄像头,无需施工改造,降低智能化升级成本的智慧工业开源了。
智慧工业视觉监控平台是一款功能强大且简单易用的实时算法视频监控系统。它的愿景是最底层打通各大芯片厂商相互间的壁垒,省去繁琐重复的适配流程,实现芯片、算法、应用的全流程组合,从而大大减少企业级应用约95%的开发成本。用户只需在界面上…...

系统架构师考试学习笔记第三篇——架构设计高级知识(19)嵌入式系统架构设计理论与实践
本章考点: 第19课时主要学习嵌入式系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分)。在历年考试中,案例题对该部分内容都有固定考查,综合知识选择题目中有固定分值…...

深度学习在微纳光子学中的应用
深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向: 逆向设计 通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

【入坑系列】TiDB 强制索引在不同库下不生效问题
文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...
在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module
1、为什么要修改 CONNECT 报文? 多租户隔离:自动为接入设备追加租户前缀,后端按 ClientID 拆分队列。零代码鉴权:将入站用户名替换为 OAuth Access-Token,后端 Broker 统一校验。灰度发布:根据 IP/地理位写…...
【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表
1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...

cf2117E
原题链接:https://codeforces.com/contest/2117/problem/E 题目背景: 给定两个数组a,b,可以执行多次以下操作:选择 i (1 < i < n - 1),并设置 或,也可以在执行上述操作前执行一次删除任意 和 。求…...
oracle与MySQL数据库之间数据同步的技术要点
Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异,它们的数据同步要求既要保持数据的准确性和一致性,又要处理好性能问题。以下是一些主要的技术要点: 数据结构差异 数据类型差异ÿ…...

微服务商城-商品微服务
数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...
什么是EULA和DPA
文章目录 EULA(End User License Agreement)DPA(Data Protection Agreement)一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA(End User License Agreement) 定义: EULA即…...
Axios请求超时重发机制
Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式: 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...
【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具
第2章 虚拟机性能监控,故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令:jps [options] [hostid] 功能:本地虚拟机进程显示进程ID(与ps相同),可同时显示主类&#x…...