python科学计算:NumPy 线性代数与矩阵操作
1 NumPy 中的矩阵与数组
在 NumPy 中,矩阵实际上是一种特殊的二维数组,因此几乎所有数组的操作都可以应用到矩阵上。不过,矩阵运算与一般的数组运算存在一定的区别,尤其是在点积、乘法等操作中。
1.1 创建矩阵
矩阵可以通过 NumPy 的 array()
函数创建。矩阵的形状可以通过 shape
属性来访问。
import numpy as np# 创建一个 2x3 矩阵
matrix = np.array([[1, 2, 3], [4, 5, 6]])print("矩阵:\n", matrix)
print("矩阵的形状:", matrix.shape)
1.2 矩阵与标量的运算
矩阵与标量的加法、减法、乘法和除法等运算会作用于矩阵的每个元素,类似于数组的广播机制。
# 矩阵与标量的运算
result = matrix * 2
print("矩阵与标量相乘的结果:\n", result)
2 矩阵的基本运算
2.1 矩阵加法与减法
矩阵加法和减法是元素对应的操作,只有当两个矩阵的形状相同时,才能进行加法或减法。
# 创建两个矩阵
matrix1 = np.array([[1, 2], [3, 4]])
matrix2 = np.array([[5, 6], [7, 8]])# 矩阵加法
sum_matrix = matrix1 + matrix2
print("矩阵加法结果:\n", sum_matrix)# 矩阵减法
diff_matrix = matrix1 - matrix2
print("矩阵减法结果:\n", diff_matrix)
2.2 矩阵乘法
NumPy 中的 dot()
函数用于执行矩阵乘法,或称为矩阵的点积操作。矩阵乘法的前提是第一个矩阵的列数必须等于第二个矩阵的行数。
# 矩阵乘法
product_matrix = np.dot(matrix1, matrix2)
print("矩阵乘法结果:\n", product_matrix)
注意: 矩阵的元素对应乘法使用
*
操作符即可,但这不是矩阵乘法。
2.3 矩阵转置
transpose()
函数用于矩阵的转置操作,即将矩阵的行和列互换。
# 矩阵转置
transposed_matrix = matrix1.transpose()
print("转置后的矩阵:\n", transposed_matrix)
2.4 单位矩阵与对角矩阵
- 单位矩阵: 单位矩阵是主对角线元素全为 1,其余元素全为 0 的矩阵,可以使用
np.eye()
创建。 - 对角矩阵: 对角矩阵是除了对角线外,其余元素均为 0 的矩阵,可以使用
np.diag()
创建。
# 创建单位矩阵
identity_matrix = np.eye(3)
print("单位矩阵:\n", identity_matrix)# 创建对角矩阵
diag_matrix = np.diag([1, 2, 3])
print("对角矩阵:\n", diag_matrix)
3 矩阵的逆与行列式
3.1 矩阵的逆
可逆矩阵(即非奇异矩阵)是指其行列式不为 0 的矩阵。NumPy 提供了 inv()
函数用于计算矩阵的逆。只有方阵(行数等于列数的矩阵)才能求逆。
from numpy.linalg import inv# 计算矩阵的逆
inverse_matrix = inv(matrix1)
print("矩阵的逆:\n", inverse_matrix)
3.2 矩阵的行列式
矩阵的行列式是一个标量值,用来描述矩阵的某些性质。det()
函数用于计算方阵的行列式。如果矩阵的行列式为 0,则该矩阵不可逆。
from numpy.linalg import det# 计算矩阵的行列式
determinant = det(matrix1)
print("矩阵的行列式:", determinant)
4 特征值与特征向量
在线性代数中,特征值和特征向量是非常重要的概念。对于一个方阵,特征向量是非零向量,当该向量与矩阵相乘时,结果是原向量的一个倍数,该倍数称为特征值。
4.1 计算特征值和特征向量
eig()
函数可以用于计算方阵的特征值和特征向量。返回的结果是一个包含两个数组的元组:第一个数组是特征值,第二个数组是对应的特征向量。
from numpy.linalg import eig# 计算特征值与特征向量
eigenvalues, eigenvectors = eig(matrix1)
print("特征值:", eigenvalues)
print("特征向量:\n", eigenvectors)
4.2 特征值分解的应用
特征值分解在很多领域都有广泛的应用,例如主成分分析(PCA)、图像压缩等。通过特征值分解,可以将矩阵分解成多个简单的矩阵形式,简化后续计算。
5 奇异值分解(SVD)
奇异值分解(Singular Value Decomposition, SVD)是一种矩阵分解技术,用于将矩阵分解为三个矩阵的乘积。它在数据压缩、降维等领域非常有用。
5.1 svd()
函数
svd()
函数可以将矩阵分解为三个矩阵:U
、S
和 V
。其中 U
和 V
是正交矩阵,S
是一个对角矩阵。
from numpy.linalg import svd# 进行奇异值分解
U, S, V = svd(matrix1)
print("U 矩阵:\n", U)
print("S 矩阵:\n", S)
print("V 矩阵:\n", V)
5.2 SVD 的应用
SVD 被广泛应用于信号处理、图像压缩和数据降维等领域。例如,在推荐系统中,SVD 可用于分解用户-物品评分矩阵,从而提取出用户和物品的潜在特征。
6 矩阵的分解
除了奇异值分解,NumPy 还支持其他几种矩阵分解方法,比如 LU 分解和 QR 分解。
1 LU 分解
LU 分解将一个矩阵分解为一个下三角矩阵和一个上三角矩阵。NumPy 提供了 lu()
函数来进行 LU 分解。
from scipy.linalg import lu# LU 分解
P, L, U = lu(matrix1)
print("P 矩阵:\n", P)
print("L 矩阵:\n", L)
print("U 矩阵:\n", U)
2 QR 分解
QR 分解将矩阵分解为一个正交矩阵和一个上三角矩阵。NumPy 提供了 qr()
函数来进行 QR 分解。
# QR 分解
Q, R = np.linalg.qr(matrix1)
print("Q 矩阵:\n", Q)
print("R 矩阵:\n", R)
相关文章:
python科学计算:NumPy 线性代数与矩阵操作
1 NumPy 中的矩阵与数组 在 NumPy 中,矩阵实际上是一种特殊的二维数组,因此几乎所有数组的操作都可以应用到矩阵上。不过,矩阵运算与一般的数组运算存在一定的区别,尤其是在点积、乘法等操作中。 1.1 创建矩阵 矩阵可以通过 Nu…...

Unity面向对象补全计划 之 List<T>与class(非基础)
C# & Unity 面向对象补全计划 泛型-CSDN博客 关于List,其本质就是C#封装好的一个数组,是一个很好用的轮子,所以并不需要什么特别说明 问题描述 假设我们有一个表示学生的类 Student,每个学生有姓名和年龄两个属性。我们需要创…...

ant design vue+vue3+ts+xlsx实现表格导出问excel文件(带自定义表头)~
1、首先默认你已安装ant design vue、xlsx 库、及file-saver。 2、导入: import * as XLSX from xlsx; import { saveAs } from file-saver; 注:这里的xlsx导入不能这么写,否则会报错,原因是版本不一致,语法向上兼容…...

基于Python爬虫的淘宝服装数据分析项目
文章目录 一.项目介绍二.爬虫代码代码分析 三. 数据处理四. 数据可视化 一.项目介绍 该项目是基于Python爬虫的淘宝服装数据分析项目,以致于帮助商家了解当前服装市场的需求,制定更加精确的营销策略。首先,需要爬取淘宝中关于服装的大量数据…...

Tomcat控制台乱码问题已解决(2024/9/7
步骤很详细,直接上教程 问题复现: 情景一 情景二 原因简述 这是由于编码不一致引起的,Tomcat启动后默认编码UTF-8,而Windows的默认编码是GBK。因此你想让其不乱码,只需配置conf\logging.properties的编码格式即可 解决…...

vue通过html2canvas+jspdf生成PDF问题全解(水印,分页,截断,多页,黑屏,空白,附源码)
前端导出PDF的方法不多,常见的就是利用canvas画布渲染,再结合jspdf导出PDF文件,代码也不复杂,网上的代码基本都可以拿来即用。 如果不是特别追求完美的情况下,或者导出PDF内容单页的话,那么基本上也就满足业…...

服务器数据恢复—Raid磁盘阵列故障类型和常见故障原因
出于尽可能避免数据灾难的设计初衷,RAID解决了3个问题:容量问题、IO性能问题、存储安全(冗余)问题。从数据恢复的角度讨论RAID的存储安全问题。 常见的起到存储安全作用的RAID方案有RAID1、RAID5及其变形。基本设计思路是相似的:当部分数据异…...
C++字符串中的string类操作
愿我如星君如月,夜夜流光相皎洁。 ——《车逍遥篇》【宋】范成大 目录 正文: 主要特点: 基本操作: 代码演示: 总结: 今天我们接着上次的章节继续,这次我们来说一个为解决上个方法的缺陷而诞…...

axios设置responseType: ‘blob‘,获取接口返回的错误信息
在axios的请求中当后端接口返回的是文件流的情况下,我们需要在请求参数里面设置responseType: blob,如果接口报错,默认前端无法获取后端返回的错误信息。 解决方法:通过FileReader获取错误信息 async handleFetch() {const res aw…...

【C++】:模板初阶—函数模板|类模板
✨ Blog’s 主页: 白乐天_ξ( ✿>◡❛) 🌈 个人Motto:他强任他强,清风拂山岗! 💫 欢迎来到我的学习笔记! 本文参考博客:一同感受C模版的所带来的魅力 一、泛型编程思想 首先…...
Java 远程执行服务器上的命令
在Java中使用JSch库执行远程服务器上的命令是一种常见的做法,特别是在需要自动化运维任务或者进行远程文件操作时。以下是基于Codekru网站提供的示例,展示如何使用JSch库在远程服务器上执行单个或多个命令。 准备工作 首先,确保您的项目中已…...

3DMax基础- 创建基础模型
目录 零.软件简介 一. 标准基本型 长方体 圆锥体 球体 圆柱体 管状体 圆环 四棱锥 茶壶 平面编辑 加强型文本 二. 扩展基本体 三.复合对象 变形 散布 一致 连接 图形合并 布尔 并集 合并 交集 差集 四.门和窗 门 窗 植物,栏杆,墙 零.软件简介 3…...

JavaScript 知识点(从基础到进阶)
🌏个人博客主页:心.c 前言:JavaScript已经学完了,和大家分享一下我的笔记,希望大家可以有所收获,花不多说,开干!!! 🔥🔥ǵ…...

计算机网络知识点复习——TCP协议的三次握手与四次挥手(连接与释放)
TCP协议的三次握手与四次挥手(连接与释放) 一、前言二、简单的知识准备1. TCP协议的主要特点2. TCP报文段 三、TCP连接的建立(三次握手)四、TCP连接的释放(四次挥手)五、TCP连接与释放的总结六、结束语 一、…...

SpringDataJPA系列(7)Jackson注解在实体中应用
SpringDataJPA系列(7)Jackson注解在实体中应用 常用的Jackson注解 Springboot中默认集成的是Jackson,我们可以在jackson依赖包下看到Jackson有多个注解 一般常用的有下面这些: 一个实体的示例 测试方法如下: 按照上述图片中的序号做个简…...
【Spring Boot 3】【Web】统一封装 HTTP 响应体
【Spring Boot 3】【Web】统一封装 HTTP 响应体 背景介绍开发环境开发步骤及源码工程目录结构总结背景 软件开发是一门实践性科学,对大多数人来说,学习一种新技术不是一开始就去深究其原理,而是先从做出一个可工作的DEMO入手。但在我个人学习和工作经历中,每次学习新技术总…...
Linux如何做ssh反向代理
SSH反向代理是一种通过SSH协议实现的安全远程访问方式,它允许客户端通过SSH连接到一台具有公网IP的代理服务器,然后这台代理服务器再将请求转发给内部网络中的目标主机。以下是实现SSH反向代理的步骤: 一、准备工作 确保服务器配置ÿ…...

Verilog语法+:和-:有什么用?
Verilog语法:和-:主要用于位选择,可以让代码更简洁。 一、位选择基础 在Verilog中,位选择可以通过直接索引来实现,例如: reg [7:0] data; wire select_a; wire [2:0] select_b; assign select_a data[3]; assign select_b …...
stm32F103 串口2 中断 无法接收指定字符串 [已解决]
stm32F103 串口2中断接收指定字符串 USART 初始化和中断配置示例中断处理函数示例关键点总结 确保在串口配置中正确使能空闲中断 ( USART_IT_IDLE) 是关键。这个中断可以帮助你在串口接收一帧数据完成后,进行相应的处理和分析。 为了确保你在串口配置时能避免类似问…...

Matlab/Simulink和AMEsim联合仿真(以PSO-PID算法为例)
目录 安装软件和配置环境变量 Matlab/Simulink和AMEsim联合仿真详细流程 非常重要的一点 Simulink模型和AMEsim模型用S-Function建立连接 从AMEsim软件打开Matlab Matlab里的设置 Matlab的.m文件修改(对于PSO-PID算法) 运行程序 我印象中好像做过…...

springboot 百货中心供应链管理系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,百货中心供应链管理系统被用户普遍使用,为方…...
进程地址空间(比特课总结)
一、进程地址空间 1. 环境变量 1 )⽤户级环境变量与系统级环境变量 全局属性:环境变量具有全局属性,会被⼦进程继承。例如当bash启动⼦进程时,环 境变量会⾃动传递给⼦进程。 本地变量限制:本地变量只在当前进程(ba…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:
一、属性动画概述NETX 作用:实现组件通用属性的渐变过渡效果,提升用户体验。支持属性:width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项: 布局类属性(如宽高)变化时&#…...
在rocky linux 9.5上在线安装 docker
前面是指南,后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...
深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法
深入浅出:JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中,随机数的生成看似简单,却隐藏着许多玄机。无论是生成密码、加密密钥,还是创建安全令牌,随机数的质量直接关系到系统的安全性。Jav…...

【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)
可以使用Sqliteviz这个网站免费编写sql语句,它能够让用户直接在浏览器内练习SQL的语法,不需要安装任何软件。 链接如下: sqliteviz 注意: 在转写SQL语法时,关键字之间有一个特定的顺序,这个顺序会影响到…...

Psychopy音频的使用
Psychopy音频的使用 本文主要解决以下问题: 指定音频引擎与设备;播放音频文件 本文所使用的环境: Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...

Linux-07 ubuntu 的 chrome 启动不了
文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了,报错如下四、启动不了,解决如下 总结 问题原因 在应用中可以看到chrome,但是打不开(说明:原来的ubuntu系统出问题了,这个是备用的硬盘&a…...
docker 部署发现spring.profiles.active 问题
报错: org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...

Qemu arm操作系统开发环境
使用qemu虚拟arm硬件比较合适。 步骤如下: 安装qemu apt install qemu-system安装aarch64-none-elf-gcc 需要手动下载,下载地址:https://developer.arm.com/-/media/Files/downloads/gnu/13.2.rel1/binrel/arm-gnu-toolchain-13.2.rel1-x…...