OpenCV图像分割教程
OpenCV 图像分割教程
OpenCV 是一个非常强大的计算机视觉库,支持各种图像处理任务。图像分割是 OpenCV 支持的一个重要功能,它用于将图像划分为不同的区域,识别感兴趣的部分。我们将通过介绍 OpenCV 中的图像分割方法,包括基础功能、进阶功能和高级功能,来帮助你理解和掌握图像分割的应用。
官方文档链接:
OpenCV 官方文档
一、OpenCV 库概述
1.1 什么是 OpenCV?
OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习软件库。它为实时图像处理任务提供了数百种高效的工具和算法,并广泛应用于领域如图像处理、视频分析、机器学习、增强现实等。
1.2 OpenCV 的架构
- 核心模块:提供基本的数据结构和工具。
- 图像处理模块:支持各种图像变换和滤波操作。
- 对象检测模块:支持基于深度学习的检测算法。
- 视频分析模块:支持运动检测、跟踪和背景分割。
- 机器学习模块:提供各种经典的机器学习算法。
二、基础功能:阈值分割
阈值分割是最简单的一种图像分割方法,它通过将图像的像素值与某个阈值进行比较,来区分前景和背景。该方法适用于图像的亮度差异明显的情况。
2.1 基础 API 介绍
cv2.threshold() 是 OpenCV 提供的主要阈值分割函数。其语法为:
retval, dst = cv2.threshold(src, thresh, maxval, type)
- src:输入图像(灰度图)。
- thresh:阈值。
- maxval:当像素值大于阈值时,分配给它的值。
- type:阈值类型(如二值化、反二值化等)。
2.2 代码示例
import cv2
import numpy as np# 读取灰度图像
image = cv2.imread('example.jpg', 0)# 应用全局阈值
ret, thresh1 = cv2.threshold(image, 127, 255, cv2.THRESH_BINARY)# 显示原图和阈值分割后的图像
cv2.imshow('Original Image', image)
cv2.imshow('Thresholded Image', thresh1)cv2.waitKey(0)
cv2.destroyAllWindows()
解释:
- 该代码将图像读取为灰度图,然后应用全局阈值分割,所有像素值大于127的部分被设置为255(白色),小于127的部分被设置为0(黑色)。
三、进阶功能:自适应阈值与 Otsu 分割
对于具有复杂光照条件的图像,全局阈值方法可能效果不好。自适应阈值和 Otsu 方法可以帮助处理更复杂的场景。
3.1 自适应阈值
自适应阈值根据图像的局部区域计算阈值,更适用于光照不均匀的图像。
cv2.adaptiveThreshold() 的语法为:
dst = cv2.adaptiveThreshold(src, maxValue, adaptiveMethod, thresholdType, blockSize, C)
- adaptiveMethod:使用的自适应阈值算法,常用
cv2.ADAPTIVE_THRESH_MEAN_C或cv2.ADAPTIVE_THRESH_GAUSSIAN_C。 - blockSize:计算局部阈值的邻域大小。
- C:从平均值或加权平均值中减去的常数。
3.2 Otsu 分割
Otsu 方法可以自动计算最优阈值,用于二值化。
ret2, th2 = cv2.threshold(image, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
3.3 代码示例
import cv2# 读取灰度图像
image = cv2.imread('example.jpg', 0)# Otsu 阈值分割
ret2, th2 = cv2.threshold(image, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)# 自适应阈值分割
th3 = cv2.adaptiveThreshold(image, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2)# 显示分割结果
cv2.imshow('Otsu Threshold', th2)
cv2.imshow('Adaptive Threshold', th3)cv2.waitKey(0)
cv2.destroyAllWindows()
解释:
- 使用 Otsu 方法自动计算最佳阈值,二值化图像。
- 自适应阈值则根据局部区域计算阈值,适合处理光照不均的图像。
四、高级功能:分水岭算法
分水岭算法是一种更复杂的图像分割方法,通常用于分割重叠物体。
4.1 分水岭算法的工作原理
分水岭算法将图像视为一个地形图,图像的亮度值表示高程,算法将找到各个低谷区域的边界进行分割。
4.2 使用分水岭算法的步骤:
- 预处理图像(如应用高斯模糊)。
- 使用阈值或其他方法生成二值图像。
- 通过距离变换生成标记图像。
- 应用分水岭算法进行分割。
4.3 代码示例
import cv2
import numpy as np# 读取图像
image = cv2.imread('example.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 阈值化处理
ret, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)# 去除噪声
kernel = np.ones((3,3), np.uint8)
opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=2)# 确定背景
sure_bg = cv2.dilate(opening, kernel, iterations=3)# 确定前景
dist_transform = cv2.distanceTransform(opening, cv2.DIST_L2, 5)
ret, sure_fg = cv2.threshold(dist_transform, 0.7*dist_transform.max(), 255, 0)# 标记未确定区域
sure_fg = np.uint8(sure_fg)
unknown = cv2.subtract(sure_bg, sure_fg)# 标记
ret, markers = cv2.connectedComponents(sure_fg)# 加 1 ,确保背景是 1 而不是 0
markers = markers + 1# 标记未知区域为 0
markers[unknown == 255] = 0# 应用分水岭算法
markers = cv2.watershed(image, markers)
image[markers == -1] = [255, 0, 0]# 显示结果
cv2.imshow('Watershed Result', image)
cv2.waitKey(0)
cv2.destroyAllWindows()
解释:
- 通过形态学操作去除噪声,确定前景和背景。
- 使用距离变换识别前景区域。
- 分水岭算法处理图像,最终得到边界。
总结
我们介绍了 OpenCV 中的几种图像分割方法,从最基础的阈值分割,到进阶的自适应阈值和 Otsu 方法,再到高级的分水岭算法。根据不同的应用场景,选择合适的分割方法是关键。
相关文章:
OpenCV图像分割教程
OpenCV 图像分割教程 OpenCV 是一个非常强大的计算机视觉库,支持各种图像处理任务。图像分割是 OpenCV 支持的一个重要功能,它用于将图像划分为不同的区域,识别感兴趣的部分。我们将通过介绍 OpenCV 中的图像分割方法,包括基础功…...
python科学计算:NumPy 线性代数与矩阵操作
1 NumPy 中的矩阵与数组 在 NumPy 中,矩阵实际上是一种特殊的二维数组,因此几乎所有数组的操作都可以应用到矩阵上。不过,矩阵运算与一般的数组运算存在一定的区别,尤其是在点积、乘法等操作中。 1.1 创建矩阵 矩阵可以通过 Nu…...
Unity面向对象补全计划 之 List<T>与class(非基础)
C# & Unity 面向对象补全计划 泛型-CSDN博客 关于List,其本质就是C#封装好的一个数组,是一个很好用的轮子,所以并不需要什么特别说明 问题描述 假设我们有一个表示学生的类 Student,每个学生有姓名和年龄两个属性。我们需要创…...
ant design vue+vue3+ts+xlsx实现表格导出问excel文件(带自定义表头)~
1、首先默认你已安装ant design vue、xlsx 库、及file-saver。 2、导入: import * as XLSX from xlsx; import { saveAs } from file-saver; 注:这里的xlsx导入不能这么写,否则会报错,原因是版本不一致,语法向上兼容…...
基于Python爬虫的淘宝服装数据分析项目
文章目录 一.项目介绍二.爬虫代码代码分析 三. 数据处理四. 数据可视化 一.项目介绍 该项目是基于Python爬虫的淘宝服装数据分析项目,以致于帮助商家了解当前服装市场的需求,制定更加精确的营销策略。首先,需要爬取淘宝中关于服装的大量数据…...
Tomcat控制台乱码问题已解决(2024/9/7
步骤很详细,直接上教程 问题复现: 情景一 情景二 原因简述 这是由于编码不一致引起的,Tomcat启动后默认编码UTF-8,而Windows的默认编码是GBK。因此你想让其不乱码,只需配置conf\logging.properties的编码格式即可 解决…...
vue通过html2canvas+jspdf生成PDF问题全解(水印,分页,截断,多页,黑屏,空白,附源码)
前端导出PDF的方法不多,常见的就是利用canvas画布渲染,再结合jspdf导出PDF文件,代码也不复杂,网上的代码基本都可以拿来即用。 如果不是特别追求完美的情况下,或者导出PDF内容单页的话,那么基本上也就满足业…...
服务器数据恢复—Raid磁盘阵列故障类型和常见故障原因
出于尽可能避免数据灾难的设计初衷,RAID解决了3个问题:容量问题、IO性能问题、存储安全(冗余)问题。从数据恢复的角度讨论RAID的存储安全问题。 常见的起到存储安全作用的RAID方案有RAID1、RAID5及其变形。基本设计思路是相似的:当部分数据异…...
C++字符串中的string类操作
愿我如星君如月,夜夜流光相皎洁。 ——《车逍遥篇》【宋】范成大 目录 正文: 主要特点: 基本操作: 代码演示: 总结: 今天我们接着上次的章节继续,这次我们来说一个为解决上个方法的缺陷而诞…...
axios设置responseType: ‘blob‘,获取接口返回的错误信息
在axios的请求中当后端接口返回的是文件流的情况下,我们需要在请求参数里面设置responseType: blob,如果接口报错,默认前端无法获取后端返回的错误信息。 解决方法:通过FileReader获取错误信息 async handleFetch() {const res aw…...
【C++】:模板初阶—函数模板|类模板
✨ Blog’s 主页: 白乐天_ξ( ✿>◡❛) 🌈 个人Motto:他强任他强,清风拂山岗! 💫 欢迎来到我的学习笔记! 本文参考博客:一同感受C模版的所带来的魅力 一、泛型编程思想 首先…...
Java 远程执行服务器上的命令
在Java中使用JSch库执行远程服务器上的命令是一种常见的做法,特别是在需要自动化运维任务或者进行远程文件操作时。以下是基于Codekru网站提供的示例,展示如何使用JSch库在远程服务器上执行单个或多个命令。 准备工作 首先,确保您的项目中已…...
3DMax基础- 创建基础模型
目录 零.软件简介 一. 标准基本型 长方体 圆锥体 球体 圆柱体 管状体 圆环 四棱锥 茶壶 平面编辑 加强型文本 二. 扩展基本体 三.复合对象 变形 散布 一致 连接 图形合并 布尔 并集 合并 交集 差集 四.门和窗 门 窗 植物,栏杆,墙 零.软件简介 3…...
JavaScript 知识点(从基础到进阶)
🌏个人博客主页:心.c 前言:JavaScript已经学完了,和大家分享一下我的笔记,希望大家可以有所收获,花不多说,开干!!! 🔥🔥ǵ…...
计算机网络知识点复习——TCP协议的三次握手与四次挥手(连接与释放)
TCP协议的三次握手与四次挥手(连接与释放) 一、前言二、简单的知识准备1. TCP协议的主要特点2. TCP报文段 三、TCP连接的建立(三次握手)四、TCP连接的释放(四次挥手)五、TCP连接与释放的总结六、结束语 一、…...
SpringDataJPA系列(7)Jackson注解在实体中应用
SpringDataJPA系列(7)Jackson注解在实体中应用 常用的Jackson注解 Springboot中默认集成的是Jackson,我们可以在jackson依赖包下看到Jackson有多个注解 一般常用的有下面这些: 一个实体的示例 测试方法如下: 按照上述图片中的序号做个简…...
【Spring Boot 3】【Web】统一封装 HTTP 响应体
【Spring Boot 3】【Web】统一封装 HTTP 响应体 背景介绍开发环境开发步骤及源码工程目录结构总结背景 软件开发是一门实践性科学,对大多数人来说,学习一种新技术不是一开始就去深究其原理,而是先从做出一个可工作的DEMO入手。但在我个人学习和工作经历中,每次学习新技术总…...
Linux如何做ssh反向代理
SSH反向代理是一种通过SSH协议实现的安全远程访问方式,它允许客户端通过SSH连接到一台具有公网IP的代理服务器,然后这台代理服务器再将请求转发给内部网络中的目标主机。以下是实现SSH反向代理的步骤: 一、准备工作 确保服务器配置ÿ…...
Verilog语法+:和-:有什么用?
Verilog语法:和-:主要用于位选择,可以让代码更简洁。 一、位选择基础 在Verilog中,位选择可以通过直接索引来实现,例如: reg [7:0] data; wire select_a; wire [2:0] select_b; assign select_a data[3]; assign select_b …...
stm32F103 串口2 中断 无法接收指定字符串 [已解决]
stm32F103 串口2中断接收指定字符串 USART 初始化和中断配置示例中断处理函数示例关键点总结 确保在串口配置中正确使能空闲中断 ( USART_IT_IDLE) 是关键。这个中断可以帮助你在串口接收一帧数据完成后,进行相应的处理和分析。 为了确保你在串口配置时能避免类似问…...
装饰模式(Decorator Pattern)重构java邮件发奖系统实战
前言 现在我们有个如下的需求,设计一个邮件发奖的小系统, 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其…...
【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器
——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的一体化测试平台,覆盖应用全生命周期测试需求,主要提供五大核心能力: 测试类型检测目标关键指标功能体验基…...
在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module
1、为什么要修改 CONNECT 报文? 多租户隔离:自动为接入设备追加租户前缀,后端按 ClientID 拆分队列。零代码鉴权:将入站用户名替换为 OAuth Access-Token,后端 Broker 统一校验。灰度发布:根据 IP/地理位写…...
spring:实例工厂方法获取bean
spring处理使用静态工厂方法获取bean实例,也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下: 定义实例工厂类(Java代码),定义实例工厂(xml),定义调用实例工厂ÿ…...
视频字幕质量评估的大规模细粒度基准
大家读完觉得有帮助记得关注和点赞!!! 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用,因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型(VLMs)在字幕生成方面…...
实现弹窗随键盘上移居中
实现弹窗随键盘上移的核心思路 在Android中,可以通过监听键盘的显示和隐藏事件,动态调整弹窗的位置。关键点在于获取键盘高度,并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...
Rapidio门铃消息FIFO溢出机制
关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系,以下是深入解析: 门铃FIFO溢出的本质 在RapidIO系统中,门铃消息FIFO是硬件控制器内部的缓冲区,用于临时存储接收到的门铃消息(Doorbell Message)。…...
代码随想录刷题day30
1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...
vulnyx Blogger writeup
信息收集 arp-scan nmap 获取userFlag 上web看看 一个默认的页面,gobuster扫一下目录 可以看到扫出的目录中得到了一个有价值的目录/wordpress,说明目标所使用的cms是wordpress,访问http://192.168.43.213/wordpress/然后查看源码能看到 这…...
GitHub 趋势日报 (2025年06月06日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 590 cognee 551 onlook 399 project-based-learning 348 build-your-own-x 320 ne…...
