JavaScript 实现虚拟滚动技术
虚拟滚动
虚拟滚动(有时称为 虚拟列表、虚拟滚动条)是 JavaScript 中的一种技术,旨在优化大数据量的列表渲染,尤其是当有成千上万的数据项时,直接渲染整个列表会导致性能问题。虚拟列表通过只渲染用户视口中可见的那一部分列表项,从而减少 DOM 元素的数量和内存占用,提高渲染性能。
使用场景:只渲染可视区域内的内容来优化大数据量渲染性能的技术。
JS 实现简单的虚拟滚动效果
<!DOCTYPE html>
<html lang="en">
<head><meta charset="UTF-8"><meta name="viewport" content="width=device-width, initial-scale=1.0"><title>Virtual Scrolling Example</title><style>#container {height: 300px;overflow-y: auto;position: relative;border: 1px solid #ccc;}.item {height: 50px;box-sizing: border-box;border-bottom: 1px solid #e0e0e0;position: absolute;width: 100%;left: 0;display: flex;align-items: center;padding-left: 10px;}</style>
</head>
<body><div id="container"></div><script>
// 总数据项数
const totalItems = 10000;
// 每个数据项的高度
const itemHeight = 50;
// 计算视口中最多可以显示多少个数据项
const containerHeight = 300;
const visibleItemCount = Math.ceil(containerHeight / itemHeight);// 获取容器元素
const container = document.getElementById('container');// 创建一个空白的填充容器,用于撑开滚动条
const spacer = document.createElement('div');
spacer.style.height = `${totalItems * itemHeight}px`;
container.appendChild(spacer);// 创建可见项的容器
const visibleItemsContainer = document.createElement('div');
container.appendChild(visibleItemsContainer);// 渲染可见项的函数
function renderVisibleItems(scrollTop) {const startIndex = Math.floor(scrollTop / itemHeight);const endIndex = Math.min(startIndex + visibleItemCount, totalItems);// 清空之前的可见项visibleItemsContainer.innerHTML = '';// 渲染当前视口中的数据项for (let i = startIndex; i < endIndex; i++) {const item = document.createElement('div');item.className = 'item';item.style.top = `${i * itemHeight}px`;item.textContent = `Item ${i + 1}`;visibleItemsContainer.appendChild(item);}
}// 初始化渲染
renderVisibleItems(0);// 添加滚动事件监听
container.addEventListener('scroll', () => {const scrollTop = container.scrollTop;renderVisibleItems(scrollTop);
});
</script>
</body>
</html>
- 根据高度等属性,计算出滚动条的滚动大小效果。

- 根据 滚动监听和索引位置改变 ,来实现DOM元素切换。

VueUse 虚拟滚动条 工具
VueUse 虚拟滚动条:https://vueuse.nodejs.cn/core/useVirtualList/#usevirtuallist

根据官方案例来就行,使用起来很简单。
相关文章:
JavaScript 实现虚拟滚动技术
虚拟滚动 虚拟滚动(有时称为 虚拟列表、虚拟滚动条)是 JavaScript 中的一种技术,旨在优化大数据量的列表渲染,尤其是当有成千上万的数据项时,直接渲染整个列表会导致性能问题。虚拟列表通过只渲染用户视口中可见的那一…...
【重学 MySQL】十八、逻辑运算符的使用
【重学 MySQL】十八、逻辑运算符的使用 AND运算符OR运算符NOT运算符异或运算符使用 XOR 关键字使用 BIT_XOR() 函数注意事项 注意事项 在MySQL中,逻辑运算符是构建复杂查询语句的重要工具,它们用于处理布尔类型的数据,进行逻辑判断和组合条件…...
关于 QImage原始数据格式与cv::Mat原始数据进行手码数据转换 的解决方法
若该文为原创文章,转载请注明原文出处 本文章博客地址:https://hpzwl.blog.csdn.net/article/details/141996117 长沙红胖子Qt(长沙创微智科)博文大全:开发技术集合(包含Qt实用技术、树莓派、三维、OpenCV…...
前端WebSocket客户端实现
// 创建WebSocket连接 var socket new WebSocket(ws://your-spring-boot-server-url/websocket-endpoint);// 连接打开时触发 socket.addEventListener(open, function (event) {socket.send(JSON.stringify({type: JOIN, room: general})); });// 监听从服务器来的消息 socke…...
读取realsense d455双目及imu
问题定义 实时读取realsense数据喂给slam系统 代码 /** rs_d455设备 */#include <librealsense2/rs.hpp> #include <iostream>#include "rs_common_device.h"// opencv #include <opencv2/opencv.hpp>class RsD455Device: public rsCmmonDevice…...
浮点的运算
浮点数表示: N 尾数 * 基数指数 1.25 X 106 尾数一般用补码,指数一般用移码 在IEEE745中尾数可以是原码。 尾数可以表示数值的有效精度,位数越多精度越高 阶码的位数决定数的表示范围,位数越多,范围越大 对阶时&…...
对随机游走问题的分析特定行为模式的建模
从一段随机游走的数据中寻找特定的行为模式,这种问题涉及 序列模式识别 或 序列分析。处理这种问题的算法选择取决于你要找的模式的具体性质和复杂性。以下是几种可能的算法: 隐马尔可夫模型(HMM) 隐马尔可夫模型特别适合处理随…...
JVM面试(七)G1垃圾收集器剖析
概述 上一章我们说了,G1收集器,它属于里程碑式的发展,开创了面向局部收集垃圾的概念。专门针对多核处理器以及大内存的机器。在JDK9中,更是呗指定为官方的GC收集器。满足高吞吐的通知满足GC的STW停顿时间尽可能的短。 虽然现在我…...
php转职golang第一期
入局golang 基础语法:学习 Go 语言的基本语法、数据类型、流程控制等。 数据结构与算法:掌握常用的数据结构和算法。 Web 开发基础:了解 HTTP 协议、Web 开发的基本概念。 Gin 框架或其他 Web 框架:深入学习使用一种 Go 的 Web…...
java后端服务监控与告警:Prometheus与Grafana集成
Java后端服务监控与告警:Prometheus与Grafana集成 大家好,我是微赚淘客返利系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿! 在现代的微服务架构中,监控和告警是确保服务稳定性的关键组成部分。Pr…...
【系统架构设计师】工厂方法设计模式
工厂方法(Factory Method)模式是一种创建型设计模式,它定义了一个用于创建对象的接口,但让子类决定要实例化的类是哪一个。工厂方法让类的实例化延迟到子类中进行。 工厂方法模式的主要角色 产品(Product):定义工厂的创建对象的接口。具体产品(Concrete Product):实…...
怎样解决OpenEuler下载sdl2失败
OpenEuler 下载 sdl2失败 解决办法(使用wget中git上下载) wget https://github.com/libsdl-org/SDL/releases/download/release-2.30.6/SDL2-2.30.6.tar.gz使用yum下载,下载的最后说找不到这样的库(no match)使用 apt-get,说找不到apt-get使用curl冲gi…...
基于Python的自然语言处理系列(2):Word2Vec(负采样)
在本系列的第二篇文章中,我们将继续探讨Word2Vec模型,这次重点介绍负采样(Negative Sampling)技术。负采样是一种优化Skip-gram模型训练效率的技术,它能在大规模语料库中显著减少计算复杂度。接下来,我们将…...
每日一题|牛客竞赛|四舍五入|字符串+贪心+模拟
每日一题|四舍五入 四舍五入 心有猛虎,细嗅蔷薇。你好朋友,这里是锅巴的C\C学习笔记,常言道,不积跬步无以至千里,希望有朝一日我们积累的滴水可以击穿顽石。 四舍五入 题目: 牛牛发明了一种新的四舍五…...
大数据之Flink(六)
17、Flink CEP 17.1、概念 17.1.1、CEP CEP是“复杂事件处理(Complex Event Processing)”的缩写;而 Flink CEP,就是 Flink 实现的一个用于复杂事件处理的库(library)。 总结起来,复杂事件处…...
设计模式学习[5]---装饰模式
文章目录 前言1. 原理阐述2. 举例2.1 人装饰方案一2.2 人装饰方案二2.3 人装饰方案三 总结 前言 近期在给一个已有的功能拓展新功能时,基于原有的设计类图进行讨论。其中涉及到了装饰模式,因为书本很早已经看过一遍,所以谈及到这个名词的时候…...
3.C_数据结构_栈
概述 什么是栈: 栈又称堆栈,是限定在一段进行插入和删除操作的线性表。具有后进先出(LIFO)的特点。 相关名词: 栈顶:允许操作的一端栈底:不允许操作的一端空栈:没有元素的栈 栈的作用: 可…...
Debian11安装DolphinScheduler
安装地址 前置准备工作 JDK安装 下载JDK (1.8),安装并配置 JAVA_HOME 环境变量,并将其下的 bin 目录追加到 PATH 环境变量中。如果你的环境中已存在,可以跳过这步 二进制包安装DolphinScheduler 依赖 apt-get install psmisc 二进制安…...
C语言深度剖析--不定期更新的第五弹
const关键字 来看一段代码: #include <stdio.h> int main() {int a 10;a 20;printf("%d\n", a);return 0; }运行结果如下: 接下来我们在上面的代码做小小的修改: #include <stdio.h> int main() {const int a 1…...
python之事务
事务(Transaction)是数据库管理系统(DBMS)中的一个重要概念,用于确保一组数据库操作要么全部成功,要么全部失败,从而保证数据的一致性和完整性。 事务ACID 特性 事务具有以下四个特性…...
AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
反向工程与模型迁移:打造未来商品详情API的可持续创新体系
在电商行业蓬勃发展的当下,商品详情API作为连接电商平台与开发者、商家及用户的关键纽带,其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息(如名称、价格、库存等)的获取与展示,已难以满足市场对个性化、智能…...
《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》
在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中࿰…...
【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)
🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...
Android 之 kotlin 语言学习笔记三(Kotlin-Java 互操作)
参考官方文档:https://developer.android.google.cn/kotlin/interop?hlzh-cn 一、Java(供 Kotlin 使用) 1、不得使用硬关键字 不要使用 Kotlin 的任何硬关键字作为方法的名称 或字段。允许使用 Kotlin 的软关键字、修饰符关键字和特殊标识…...
面向无人机海岸带生态系统监测的语义分割基准数据集
描述:海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而,目前该领域仍面临一个挑战,即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...
使用Spring AI和MCP协议构建图片搜索服务
目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式(本地调用) SSE模式(远程调用) 4. 注册工具提…...
MySQL 知识小结(一)
一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库,分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷,但是文件存放起来数据比较冗余,用二进制能够更好管理咱们M…...
Windows安装Miniconda
一、下载 https://www.anaconda.com/download/success 二、安装 三、配置镜像源 Anaconda/Miniconda pip 配置清华镜像源_anaconda配置清华源-CSDN博客 四、常用操作命令 Anaconda/Miniconda 基本操作命令_miniconda创建环境命令-CSDN博客...
面试高频问题
文章目录 🚀 消息队列核心技术揭秘:从入门到秒杀面试官1️⃣ Kafka为何能"吞云吐雾"?性能背后的秘密1.1 顺序写入与零拷贝:性能的双引擎1.2 分区并行:数据的"八车道高速公路"1.3 页缓存与批量处理…...
