P3565 [POI2014] HOT-Hotels
~~~~~ P3565 [POI2014] HOT-Hotels ~~~~~ 总题单链接
思路
~~~~~ 设 g [ u ] [ i ] g[u][i] g[u][i] 表示在 u u u 的子树内,距离 u u u 为 i i i 的点的个数。
~~~~~ 设 d p [ u ] [ i ] dp[u][i] dp[u][i] 表示: u u u 的子树内存在两个点 x , y x,y x,y,设 d i s ( x , l c a ) = d i s ( y , l c a ) = d dis(x,lca)=dis(y,lca)=d dis(x,lca)=dis(y,lca)=d, d i s ( l c a , u ) = k dis(lca,u)=k dis(lca,u)=k, i = d − k i=d-k i=d−k。举个栗子:

~~~~~ 上图中 d p [ 1 ] [ 1 ] = 3 dp[1][1]=3 dp[1][1]=3({x=4,y=5},{x=4,y=8},{x=6,y=8})。
~~~~~ 对于每个 u u u:
~~~~~ a n s = a n s + d p [ u ] [ 0 ] ans=ans+dp[u][0] ans=ans+dp[u][0]
~~~~~ a n s = a n s + ∑ x , y ∈ s o n ( u ) , x ! = y d p [ x ] [ j + 1 ] ∗ g [ y ] [ j − 1 ] ans=ans+\sum_{x,y\in son(u),x!=y}dp[x][j+1]*g[y][j-1] ans=ans+∑x,y∈son(u),x!=ydp[x][j+1]∗g[y][j−1],为什么是 j + 1 j+1 j+1 和 j − 1 j-1 j−1?因为 u u u 和 y y y 已经补了两个,不懂的同学可以画个图看一下。
~~~~~ d p [ u ] [ i ] = d p [ u ] [ i ] + g [ x ] [ i − 1 ] ∗ g [ y ] [ i − 1 ] dp[u][i] =dp[u][i]+g[x][i-1]*g[y][i-1] dp[u][i]=dp[u][i]+g[x][i−1]∗g[y][i−1],这是 k = 0 k=0 k=0 的情况。
~~~~~ d p [ u ] [ i ] = d p [ u ] [ i ] + d p [ v ] [ i − 1 ] dp[u][i]=dp[u][i]+dp[v][i-1] dp[u][i]=dp[u][i]+dp[v][i−1]
~~~~~ 以上公式可以用前缀和做到 O ( N ) O(N) O(N) 转移。
~~~~~ 时间复杂度 O ( N 2 ) O(N^2) O(N2),空间复杂度 O ( N 2 ) O(N^2) O(N2)。
~~~~~ 发现这道题可以用长链剖分将时间复杂度优化至 O ( N ) O(N) O(N),但这个以后再将。
代码
#include<bits/stdc++.h>
#define ll long long
using namespace std;
int n;ll ans;vector<int>eg[5002];
int f[5002][5002],g[5002][5002];
inline void dfs(int fa,int p)
{f[p][0]=1;for(int v:eg[p]) {if(v==fa)continue;dfs(p,v);for(int i=0;i<=n;i++)ans+=g[p][i]*(i==0?0:f[v][i-1])+g[v][i+1]*f[p][i];for(int i=0;i<=n;i++)g[p][i]+=f[p][i]*(i==0?0:f[v][i-1])+g[v][i+1];for(int i=1;i<=n;i++)f[p][i]+=f[v][i-1];}
}
signed main(){cin>>n;for(int i=1;i<n;i++) {int u,v;cin>>u>>v;eg[u].push_back(v);eg[v].push_back(u);}dfs(0,1);cout<<ans;return 0;
}
相关文章:
P3565 [POI2014] HOT-Hotels
~~~~~ P3565 [POI2014] HOT-Hotels ~~~~~ 总题单链接 思路 ~~~~~ 设 g [ u ] [ i ] g[u][i] g[u][i] 表示在 u u u 的子树内,距离 u u u 为 i i i 的点的个数。 ~~~~~ 设 d p [ u ] [ i ] dp[u][i] dp[u][i] 表示: u u u 的子树内存在两个点 x , …...
设计模式 | 单例模式
定义 单例设计模式(Singleton Pattern)是一种创建型设计模式,它确保一个类只有一个实例,并提供一个全局访问点来获取该实例。这种模式常用于需要控制对某些资源的访问的场景,例如数据库连接、日志记录等。 单例模式涉…...
Web安全之CSRF攻击详解与防护
在互联网应用中,安全性问题是开发者必须时刻关注的核心内容之一。跨站请求伪造(Cross-Site Request Forgery, CSRF),是一种常见的Web安全漏洞。通过CSRF攻击,黑客可以冒用受害者的身份,发送恶意请求&#x…...
IDEA运行Java程序提示“java: 警告: 源发行版 11 需要目标发行版 11”
遇到这个提示一般是在pom.xml中已经指定了构建的Java版本环境是11例如(此时添加了build插件的情况下虽然不能直接运行代码但是maven是可以正常打包构建): <build><plugins><plugin><groupId>org.apache.maven.plugins</groupId><…...
车载测试| 汽车的五域架构 (含线控技术知识)
汽车的五域架构是一种将汽车电子控制系统按照功能进行划分的架构模式,主要包括动力域、底盘域、座舱域、自动驾驶域和车身域。(汽车三域架构通常是指将汽车电子系统划分为三个主要领域:动力域、底盘域和智能座舱域(或车身舒适域&a…...
【Linux】gcc/g++ 、make/Makefile、git、gdb 的使用
目录 1. Linux编译器-gcc/g1.1 编译器gcc/g的工作步骤1.2 函数库1.2.1 函数库的作用及分类1.2.2 动态链接和静态链接1.2.3 动态库和静态库的优缺点 1.3 gcc选项 2. Linux项目自动化构建工具-make/Makefile2.1 .PHONY2.2 尝试编写进度条程序 3. git3.1 安装 git3.2 下载项目到本…...
Elastic Stack--ES的DSL语句查询
前言:本博客仅作记录学习使用,部分图片出自网络,如有侵犯您的权益,请联系删除 学习B站博主教程笔记: 最新版适合自学的ElasticStack全套视频(Elk零基础入门到精通教程)Linux运维必备—Elastic…...
ARM基础知识---CPU---处理器
目录 一、ARM架构 1.1.RAM---随机存储器 1.2.ROM---只读存储器 1.3.flash---闪存存储器 1.4.时钟(振晶) 1.5.复位 二、CPU---ARM920T 2.1.R0~R12---通用寄存器 2.2.PC程序计数器 2.3.LR连接寄存器 2.4.SP栈指针寄存器 2.5.CPSR当前程序状态寄存…...
将星 x17 安装ubuntu 20.04 双系统
准备工作,包含关闭快速启动,关闭Secret Boot 1.进入控制面板选择小图标,找到电源选项 2.点击更改当前不可用的设置,关闭快速启动 3.开机启动时快速按F2,进入BIOS 4.选择Setup Utiltity,选择Security&#…...
E31.【C语言】练习:指针运算习题集(上)
Exercise 1 求下列代码的运行结果 #include <stdio.h> int main() {int a[5] { 1, 2, 3, 4, 5 };int* ptr (int*)(&a 1);printf("%d",*(ptr - 1));return 0; } 答案速查: 分析: Exercise 2 求下列代码的运行结果 //在x86环境下 //假设结…...
git分支的管理
分支管理是 Git 版本控制系统中的一个核心功能,它涉及如何创建、管理、合并和删除分支,以便在团队协作和开发过程中更有效地组织代码。以下是分支管理中的一些关键概念和实践: 1. 分支的创建 创建新分支:在开发新功能、修复 bug…...
对于消息队列的一些思考
如何保证消息不被重复消费 唯一ID:你提到的通过唯一ID解决重复消费问题非常重要。这通常通过业务系统引入唯一消息ID(如UUID)来实现。在消费端,先检查消息ID是否已经被处理,未处理过的才进行处理,确保幂等…...
IM即时通讯软件-WorkPlus私有化部署的局域网即时通讯工具
随着企业对通讯安全和数据掌控的需求不断增加,许多企业开始选择私有化部署的即时通讯工具,以在内部局域网环境中实现安全、高效的沟通与协作。IM-WorkPlus作为一款受欢迎的即时通讯软件,提供了私有化部署的选项,使企业能够在自己的…...
AI大模型的饕餮盛宴,系统学习大模型技术,你想要的书都在这里了
AI大模型的饕餮盛宴,系统学习大模型技术,你想要的书都在这里了 要说现在最热门的技术,可谓非大模型莫属!不少小伙伴都想要学习大模型技术,转战AI领域,以适应未来的大趋势,寻求更有前景的发展~~…...
支付宝开放平台-开发者社区——AI 日报「9 月 9 日」
1 离开 OpenAl 后,llya 拿了10亿美金对抗 Al 作恶 极窖公园 丨阅读原文 lya Sutskever, OpenAl的前联合创始人,成立了SS1 (Safe Superintelligence),旨在构建安全的Al模型。SSl获得了10亿美元的融资,估值达到50亿美元ÿ…...
将AI与情境定位结合以确保品牌安全
你可能会看到一些广告,感觉它们跟你在线阅读或观看的内容有奇怪的关联。这就是上下文广告在起作用。这种基于广告的解决方案在不断变化的数字环境中逐步发展,已经成为每个广告主的必备工具。不过,这种广告不只是把广告和上下文进行匹配这么简…...
OpenAI 联合 SWE 发布 AI 软件工程能力测试集,Gru.ai 荣登榜首
在 9 月 3 日,Gru.ai 在 SWE-Bench-Verified 评估最新发布的数据中以 45.2% 的高分排名第一。SWE-Bench-Verified 是 OpenAI 联合 SWE 发布测试集,旨在更可靠的评估 AI 解决实际软件问题的能力。该测试集经由人工验证打标,被认为是评估 AI 软…...
一文读懂SpringMVC的工作原理
前言 MVC是经典的软件架构设计模式,几乎在各个领域各种开发语言中,均采纳了这个思想。此刻博主突然想到了Thinking in xxx系列设计书籍。换句话说,就是“各人自扫门前雪”和“术业有专攻”。当职责分配得当后,剩下的就是发挥各“…...
【python-斐波那契数列和完美数之间的区别】
斐波那契数列和完美数在数学领域中是两个截然不同的概念,它们之间存在明显的区别。以下是对这两个概念及其区别的详细阐述: 斐波那契数列 定义: 斐波那契数列,又称黄金分割数列,是一个在数学上具有重要意义的数列。它…...
【redis】本地windows五分钟快速安装redis
用处:本地自测,有时候公司redis环境不稳定,用自己的 1.下载,github下载一个解压缩在自己想要的位置 选择版本:Redis-7.4.0-Windows-x64-msys2-with-Service,zip GitHub - redis-windows/redis-windows: …...
云计算——弹性云计算器(ECS)
弹性云服务器:ECS 概述 云计算重构了ICT系统,云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台,包含如下主要概念。 ECS(Elastic Cloud Server):即弹性云服务器,是云计算…...
关于nvm与node.js
1 安装nvm 安装过程中手动修改 nvm的安装路径, 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解,但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后,通常在该文件中会出现以下配置&…...
UE5 学习系列(三)创建和移动物体
这篇博客是该系列的第三篇,是在之前两篇博客的基础上展开,主要介绍如何在操作界面中创建和拖动物体,这篇博客跟随的视频链接如下: B 站视频:s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...
渗透实战PortSwigger靶场-XSS Lab 14:大多数标签和属性被阻止
<script>标签被拦截 我们需要把全部可用的 tag 和 event 进行暴力破解 XSS cheat sheet: https://portswigger.net/web-security/cross-site-scripting/cheat-sheet 通过爆破发现body可以用 再把全部 events 放进去爆破 这些 event 全部可用 <body onres…...
06 Deep learning神经网络编程基础 激活函数 --吴恩达
深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...
select、poll、epoll 与 Reactor 模式
在高并发网络编程领域,高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表,以及基于它们实现的 Reactor 模式,为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。 一、I…...
OpenLayers 分屏对比(地图联动)
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能,和卷帘图层不一样的是,分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...
大数据学习(132)-HIve数据分析
🍋🍋大数据学习🍋🍋 🔥系列专栏: 👑哲学语录: 用力所能及,改变世界。 💖如果觉得博主的文章还不错的话,请点赞👍收藏⭐️留言Ǵ…...
如何在网页里填写 PDF 表格?
有时候,你可能希望用户能在你的网站上填写 PDF 表单。然而,这件事并不简单,因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件,但原生并不支持编辑或填写它们。更糟的是,如果你想收集表单数据ÿ…...
技术栈RabbitMq的介绍和使用
目录 1. 什么是消息队列?2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...
