基于卷积神经网络CNN的水果分类预测,卷积神经网络水果等级识别
目录
背影
卷积神经网络CNN的原理
卷积神经网络CNN的定义
卷积神经网络CNN的神经元
卷积神经网络CNN的激活函数
卷积神经网络CNN的传递函数
卷积神经网络CNN水果分类预测
基本结构
主要参数
MATALB代码
结果图
展望
背影
现在生活,为节能减排,减少电能损耗,高压智能输电网是电网发展的趋势,本文基于卷积神经网络输电线路三相故障识别。
卷积神经网络CNN的原理
卷积神经网络CNN的定义
卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习(deep learning)的代表算法之一 。卷积神经网络具有表征学习(representation learning)能力,能够按其阶层结构对输入信息进行平移不变分类(shift-invariant classification),因此也被称为“平移不变人工神经网络(Shift-Invariant Artificial Neural Networks, SIANN)”
卷积神经网络CNN的基本结构
基本BP算法包括信号的前向传播和误差的反向传播两个过程。即计算误差输出时按从输入到输出的方向进行,而调整权值和阈值则从输出到输入的方向进行。正向传播时,输入信号通过隐含层作用于输出节点,经过非线性变换,产生输出信号,若实际输出与期望输出不相符,则转入误差的反向传播过程。误差反传是将输出误差通过隐含层向输入层逐层反传,并将误差分摊给各层所有单元,以从各层获得的误差信号作为调整各单元权值的依据。通过调整输入节点与隐层节点的联接强度和隐层节点与输出节点的联接强度以及阈值,使误差沿梯度方向下降,经过反复学习训练,确定与最小误差相对应的网络参数(权值和阈值),训练即告停止。此时经过训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线形转换的信息。
输入层
卷积神经网络的输入层可以处理多维数据,常见地,一维卷积神经网络的输入层接收一维或二维数组,其中一维数组通常为时间或频谱采样;二维数组可能包含多个通道;二维卷积神经网络的输入层接收二维或三维数组;三维卷积神经网络的输入层接收四维数组 。由于卷积神经网络在计算机视觉领域应用较广,因此许多研究在介绍其结构时预先假设了三维输入数据,即平面上的二维像素点和RGB通道。
与其它神经网络算法类似,由于使用梯度下降算法进行学习,卷积神经网络的输入特征需要进行标准化处理。具体地,在将学习数据输入卷积神经网络前,需在通道或时间/频率维对输入数据进行归一化,若输入数据为像素,也可将分布于 的原始像素值归一化至 区间 。输入特征的标准化有利于提升卷积神经网络的学习效率和表现。
隐含层
卷积神经网络的隐含层包含卷积层、池化层和全连接层3类常见构筑,在一些更为现代的算法中可能有Inception模块、残差块(residual block)等复杂构筑。在常见构筑中,卷积层和池化层为卷积神经网络特有。卷积层中的卷积核包含权重系数,而池化层不包含权重系数,因此在文献中,池化层可能不被认为是独立的层。以LeNet-5为例,3类常见构筑在隐含层中的顺序通常为:输入-卷积层-池化层-全连接层-输出。
卷积层
卷积层的功能是对输入数据进行特征提取,其内部包含多个卷积核,组成卷积核的每个元素都对应一个权重系数和一个偏差量(bias vector),类似于一个前馈神经网络的神经元(neuron)。卷积层内每个神经元都与前一层中位置接近的区域的多个神经元相连,区域的大小取决于卷积核的大小,在文献中被称为“感受野(receptive field)”,其含义可类比视觉皮层细胞的感受野 。卷积核在工作时,会有规律地扫过输入特征,在感受野内对输入特征做矩阵元素乘法求和并叠加偏差量
池化层(pooling layer)
在卷积层进行特征提取后,输出的特征图会被传递至池化层进行特征选择和信息过滤。池化层包含预设定的池化函数,其功能是将特征图中单个点的结果替换为其相邻区域的特征图统计量。池化层选取池化区域与卷积核扫描特征图步骤相同,由池化大小、步长和填充控制
全连接层(fully-connected layer)
卷积神经网络中的全连接层等价于传统前馈神经网络中的隐含层。全连接层位于卷积神经网络隐含层的最后部分,并只向其它全连接层传递信号。特征图在全连接层中会失去空间拓扑结构,被展开为向量并通过激励函数
输出层
卷积神经网络中输出层的上游通常是全连接层,因此其结构和工作原理与传统前馈神经网络中的输出层相同。对于图像分类问题,输出层使用逻辑函数或归一化指数函数(softmax function)输出分类标签 。在物体识别(object detection)问题中,输出层可设计为输出物体的中心坐标、大小和分类 。在图像语义分割中,输出层直接输出每个像素的分类结果
基于卷积神经网络CNN的水果分类识别
基本模型
创建经典的Lenet,三层神经网络,
神经网络参数
卷积核33,池化层22,学习率0.5,训练批次10,最大迭代次数100
数据
MATLAB编程代码
clear
clc
close all
%%
clc;clear;close all; format compact
%% 加载数据
load tz_datasets
data=tz_image;
%%
input1=double(data);%转为double类型文件
output1=[ones(1,16) 2ones(1,16) ];%16个好橘子,作为标签1,剩下的怀橘子对应标签2
%%
[PCALoadings,PCAScores,PCAVar] = pca(input1);%利用PCA进行降维
input=PCAScores(:,1:16);%利用pca进行降维至16维,用于构建一个44的矩阵输入(CNN的输入是图片)
%%
%把输出从1维变成2维 好橘子为第1类,对应标签[1 0];坏橘子为第二类,对应标签[0 1]
for i=1:size(output1,2)
output(output1(i),i)=1;
end
%%
for i=1:size(input,1)
x=reshape(input(i,:),4,4);
input_x(:,:,i)=x;
end
%%
[m n]=sort(rand(1,32));
train_x=input_x(:,:,n(1:16));
train_y=output(:,n(1:16));
test_x=input_x(:,:,n(17:end));
test_y=output(:,n(17:end));
%% 创建一个经典Lenet(卷积神经网络中代表模型,如lenet、alexnet,vgg16,resnet等)
rand(‘state’,0)
cnn.layers = {
%第一层
struct(‘type’, ‘i’) %输入层
%第二层
struct(‘type’, ‘c’, ‘outputmaps’, 10, ‘kernelsize’, 3) %卷积层–相当于隐含层节点为10,每次采用一个33的卷积核进行抽样卷积
% 卷积后的图像大小为(4-3+1)(4-3+1)=22
struct(‘type’, ‘s’, ‘scale’, 2) %池化层 利用一个22的池化层把卷积后的图像降维原来的一半
% (2/2)(2/2)=11
};
%% 训练 CNN
% 参数设置
opts.alpha = 1;% 学习率
opts.batchsize = 2; %批训练大小 batchsize整数倍必须是总训练样本大小,选择更小的批数据 这样计算的更快,电脑所需内存也会大幅减小
opts.numepochs = 100;%学习迭代次数
cnn = cnnsetup(cnn, train_x, train_y);
cnn = cnntrain(cnn, train_x, train_y, opts);
% % 训练误差曲线
figure; plot(cnn.rL);xlabel(‘训练次数次数’);ylabel(‘误差’)
title(‘训练误差曲线’)
save net_cnn cnn PCALoadings
%% 测试模型有效性
% load net_cnn
% 训练集
[er1, bad1 , a1, h1] = cnntest(cnn, train_x, train_y);
disp(‘展示CNN训练集精度’)
train_acc=1-er1
figure
stem(h1);hold on
plot(a1,‘‘)
legend(‘预测输出’,‘期望输出’)
xlabel(‘样本数/个’)
ylabel(‘标签类别’)
title(‘CNN网络输出与期望输出对比–训练集’)
% 测试集
[er2, bad2 , a2, h2] = cnntest(cnn, test_x, test_y);
disp(‘展示CNN测试集精度’)
test_acc=1-er2
figure
stem(h2);hold on
plot(a2,’’)
legend(‘预测输出’,‘期望输出’)
xlabel(‘样本数/个’)
ylabel(‘标签类别’)
title(‘CNN网络输出与期望输出对比–测试集’)
function net = cnnbp(net, y)
n = numel(net.layers);
% error
net.e = net.o - y;
% loss function
net.L = 1/2* sum(net.e(:) .^ 2) / size(net.e, 2);%% backprop deltas
net.od = net.e .* (net.o .* (1 - net.o)); % output delta
net.fvd = (net.ffW' * net.od); % feature vector delta
if strcmp(net.layers{n}.type, 'c') % only conv layers has sigm functionnet.fvd = net.fvd .* (net.fv .* (1 - net.fv));
end% reshape feature vector deltas into output map style
sa = size(net.layers{n}.a{1});
fvnum = sa(1) * sa(2);
for j = 1 : numel(net.layers{n}.a)net.layers{n}.d{j} = reshape(net.fvd(((j - 1) * fvnum + 1) : j * fvnum, :), sa(1), sa(2), sa(3));
endfor l = (n - 1) : -1 : 1if strcmp(net.layers{l}.type, 'c')for j = 1 : numel(net.layers{l}.a)net.layers{l}.d{j} = net.layers{l}.a{j} .* (1 - net.layers{l}.a{j}) .* (expand(net.layers{l + 1}.d{j}, [net.layers{l + 1}.scale net.layers{l + 1}.scale 1]) / net.layers{l + 1}.scale ^ 2);endelseif strcmp(net.layers{l}.type, 's')for i = 1 : numel(net.layers{l}.a)z = zeros(size(net.layers{l}.a{1}));for j = 1 : numel(net.layers{l + 1}.a)z = z + convn(net.layers{l + 1}.d{j}, rot180(net.layers{l + 1}.k{i}{j}), 'full');endnet.layers{l}.d{i} = z;endend
end%% calc gradients
for l = 2 : nif strcmp(net.layers{l}.type, 'c')for j = 1 : numel(net.layers{l}.a)for i = 1 : numel(net.layers{l - 1}.a)net.layers{l}.dk{i}{j} = convn(flipall(net.layers{l - 1}.a{i}), net.layers{l}.d{j}, 'valid') / size(net.layers{l}.d{j}, 3);endnet.layers{l}.db{j} = sum(net.layers{l}.d{j}(:)) / size(net.layers{l}.d{j}, 3);endend
end
net.dffW = net.od * (net.fv)' / size(net.od, 2);
net.dffb = mean(net.od, 2);function X = rot180(X)X = flipdim(flipdim(X, 1), 2);
end
end
效果图
结果分析
从效果图上看,CNN卷积神经网络水果分类准确率可达到百分子95以上。
展望
CNN是一种深度信念网络,优点在可以处理大输入数据,能训练中自动降维,训练的过程就是降维的过程,缺点是拟合逼近能力不强,收敛面比较平滑,基于这些,可以和其他拟合能力强的神经网络结合,比如极限学习机,RBF等,结合后的神经网络,即可处理大输入数据,又具有无限逼近的能力,有需要扩展的欢迎扫描文章下面的二维码
相关文章:

基于卷积神经网络CNN的水果分类预测,卷积神经网络水果等级识别
目录 背影 卷积神经网络CNN的原理 卷积神经网络CNN的定义 卷积神经网络CNN的神经元 卷积神经网络CNN的激活函数 卷积神经网络CNN的传递函数 卷积神经网络CNN水果分类预测 基本结构 主要参数 MATALB代码 结果图 展望 背影 现在生活,为节能减排,减少电能…...
Spring Boot 框架总结
Spring Boot 框架总结 1. springboot的引言 Spring Boot是由Pivotal团队提供的全新框架,其设计目的是用来简化Spring应用的 初始搭建以及开发过程。该框架使用了特定的方式来进行配置,从而使开发人员不 再需要定义样板化的配置。通过这种方式࿰…...

【数据结构】第五站:带头双向循环链表
目录 一、链表的八种结构 二、带头双向循环链表的实现 1.链表的定义 2.链表的接口定义 3.接口的具体实现 三、带头双向循环链表的完整代码 四、顺序表和链表的区别 一、链表的八种结构 我们已经知道链表可以有以下三种分法 而这三种结构又可以排列组合,形成八…...
Springboot生成二维码
Springboot生成二维码整合 我们使用两种方式,去生成二维码,但是其实,二维码的生成基础,都是zxing包,这是Google开源的一个包,第一种是使用原始的zxing方式去实现,第二种是使用hutool来实现&…...

“独裁者”何小鹏,再造小鹏汽车
文丨智能相对论 作者丨沈浪 如果没有何小鹏,小鹏汽车将失去灵魂。 2014年,夏珩、何涛等人在广州组建小鹏汽车(当时还叫“橙子汽车”),何小鹏还只是股权投资人。 夏珩、何涛原任职于广汽,负责新能源汽车…...

数据结构 | 泛型 | 擦除机制| 泛型的上界
目录 编辑 1.泛型 1.1Object类引出泛型概念 2.泛型语法 2.1泛型编写代码 3.泛型的机制 3.1擦除机制 4.泛型的上界 4.1泛型上界的语法 4.2泛型上界的使用 5.泛型方法 5.1泛型方法语法 5.2泛型方法的使用 1.泛型 一般的类和方法中,只能使用具体的代码…...
C++拷贝构造函数(复制构造函数)详解
拷贝和复制是一个意思,对应的英文单词都是copy。对于计算机来说,拷贝是指用一份原有的、已经存在的数据创建出一份新的数据,最终的结果是多了一份相同的数据。例如,将 Word 文档拷贝到U盘去复印店打印,将 D 盘的图片拷…...
python学习——多线程
python学习——多线程概念python中线程的开发线程的启动线程的退出和传参threading的属性和方法threading实例的属性和方法多线程daemon线程和non-demone线程daemon线程的应用场景线程的jointhreading.local类线程的延迟执行:Timer线程同步Event 事件Lock ——锁加锁…...

SAP 系统中过账码or记账码
SAP中过账码和记账码是指同一个事物。 在实际业务中,记账码就是只有“借”和“贷”, 而SAP中Posting Code肩负着更多的任务: 1)界定科目类型, 2)借贷方向, 3)凭证输入时画面上的字…...

【FreeRTOS(一)】FreeRTOS新手入门——初识FreeRTOS
初识FreeRTOS一、实时操作系统概述1、概念2、RTOS的必要性3、RTOS与裸机的区别4、FreeRTOS的特点二、FreeRTOS的架构三、FreeRTOS的代码架构一、实时操作系统概述 1、概念 RTOS:根据各个任务的要求,进行资源(包括存储器、外设等)…...
Python中 __init__的通俗解释是什么?
__init__是Python中的一个特殊方法,用于在创建对象时初始化对象的属性。通俗来讲,它就像是一个构造函数,当我们创建一个类的实例时,__init__方法会被自动调用,用于初始化对象的属性。 举个例子,如果我们定义…...

网友真实面试总结出的自动化测试面试题库
目录 常规问题 手工测试部 自动化测试 自动化测试面试题2:selenium篇 常规问题 1、如何快速深入的了解移动互联网领域的应用 (答案:看http协议 restful api知识 json加1分) 2、对xx应用自己会花多久可以在业务上从入门到精通&…...

2023 年最佳 C++ IDE
文章目录前言1. Visual Studio2. Code::Blocks3. CLion4. Eclipse CDT(C/C 开发工具)5. CodeLite6. Apache NetBeans7. Qt Creator8. Dev C9. C Builder10. Xcode11. GNAT Programming Studio12. Kite总结前言 要跟踪极佳 IDE(集成开发环境&…...
在Ubuntu上使用VSCode编译MySQL Connector/C连接库
首先下载并解压MySQL Connector/C源码,然后执行以下步骤: 1、安装MySQL Connector/C依赖:在终端中输入以下命令来安装MySQL Connector/C的依赖项: sudo apt-get install build-essential cmake 2、下载并解压MySQL Connector/C源…...

单声道数字音频放大器AD87589
AD87589是一种集成音频系统解决方案,嵌入数字音频处理、功率级放大器和立体声2Vrms线路驱动器。 AD87589具有可编程转换速率控制的输出缓冲器,可直接驱动一个(单声道)或两个(立体声)扬声器。此外࿰…...
网络的UDP协议和TCP协议
协议:数据在网络中的传输规则,常见的协议有 UDP协议和TCP协议 协议:计算机网络中,连接和通信的规则被称为网络通信协议 UDP协议:用户数据报协议,是面向无连接通信协议,速度快,有大小…...

【JaveEE】多线程之阻塞队列(BlockingQueue)
目录 1.了解阻塞队列 2.生产者消费者模型又是什么? 2.1生产者消费者模型的优点 2.1.1降低服务器与服务器之间耦合度 2.1.2“削峰填谷”平衡消费者和生产的处理能力 3.标准库中的阻塞队列(BlockingQueue) 3.1基于标准库(Bloc…...

分布式ELK日志监控系统环境搭建
文章目录1.1为什么需要监控项目日志1.2ELK日志监控系统介绍1.3ELK的工作流程1.4ELK环境搭建1.4.1Elasticsearch的安装1.4.2Kibana的安装1.4.3Logstash的安装1.4.4数据源配置1.4.5日志监测测试1.4.6日志数据可视化展示1.1为什么需要监控项目日志 项目日志是记录项目运行过程中产…...

【数据结构刷题集】链表经典习题
😽PREFACE🎁欢迎各位→点赞👍 收藏⭐ 评论📝📢系列专栏:数据结构刷题集🔊本专栏涉及到题目是数据结构专栏的补充与应用,只更新相关题目,旨在帮助提高代码熟练度&#x…...

JavaSE(3.27) 异常
学习不要眼高手低,学习是一点点积累的。即使你现在很菜,坚持学一个学期不会差的!只要花时间学习,每天都是进步的,这些进步可能你现在看不到,但是不要小瞧了积累效应,30天,60天&#…...
conda相比python好处
Conda 作为 Python 的环境和包管理工具,相比原生 Python 生态(如 pip 虚拟环境)有许多独特优势,尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处: 一、一站式环境管理:…...
在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:
在 HarmonyOS 应用开发中,手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力,既支持点击、长按、拖拽等基础单一手势的精细控制,也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档,…...

【JVM】- 内存结构
引言 JVM:Java Virtual Machine 定义:Java虚拟机,Java二进制字节码的运行环境好处: 一次编写,到处运行自动内存管理,垃圾回收的功能数组下标越界检查(会抛异常,不会覆盖到其他代码…...

el-switch文字内置
el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...
sqlserver 根据指定字符 解析拼接字符串
DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...

NFT模式:数字资产确权与链游经济系统构建
NFT模式:数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新:构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议:基于LayerZero协议实现以太坊、Solana等公链资产互通,通过零知…...
爬虫基础学习day2
# 爬虫设计领域 工商:企查查、天眼查短视频:抖音、快手、西瓜 ---> 飞瓜电商:京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空:抓取所有航空公司价格 ---> 去哪儿自媒体:采集自媒体数据进…...

Maven 概述、安装、配置、仓库、私服详解
目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

Mac下Android Studio扫描根目录卡死问题记录
环境信息 操作系统: macOS 15.5 (Apple M2芯片)Android Studio版本: Meerkat Feature Drop | 2024.3.2 Patch 1 (Build #AI-243.26053.27.2432.13536105, 2025年5月22日构建) 问题现象 在项目开发过程中,提示一个依赖外部头文件的cpp源文件需要同步,点…...

初探Service服务发现机制
1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能:服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源…...