数学建模拓展内容:卡方检验和Fisher精确性检验(附有SPSS使用步骤)
卡方检验和Fisher精确性检验
- 卡方拟合度检验
- 卡方独立性检验
- 卡方检验的前提假设
- Fisher精确性检验
卡方拟合度检验
卡方拟合度检验概要:卡方拟合度检验也被称为单因素卡方检验,用于检验一个分类变量的预期频率和观察到的频率之间是否存在显著差异。
卡方拟合度检验举例分析:例如将一个六个面的骰子投掷36次可以得到不同点数的出现频数。在正常情况下,各个点数的出现频率应该大致相等,如果通过卡方拟合度检验判断实际频率和预期频率确实存在显著差异,那么我们就有理由认为骰子本身存在问题。
卡方独立性检验
卡方独立性检验概要:卡方独立性检验也被称为双因素卡方检验,用于检验两个类别变量之间是否相互独立。
交叉表:
- 交叉表作用:当同一个个体可以被以两种划分方式分为两种类别时,可以通过交叉表进行直观的类别判定。
- 交叉表样例:可以将一个总体人群中的人按照性别分为男性和女性,所有人按照啤酒嗜好又可以分为喜欢淡啤酒、喜欢普通啤酒、喜欢黑啤酒三类。也就是说,对于原始人群,可以分别按照两种方式进行分类,而交叉表就是综合两种分类结果的直观展示,原始数据和对应的交叉表如下所示:(表格中的性别和啤酒嗜好都已经转换为了虚拟变量)

使用SPSS绘制交叉表和进行卡方独立性检验:
-
导入原始数据后依次点击:
数据→个案加权。

-
选择
个案加权系数,将频数作为个案加权系数后点击确定。

-
依次点击:
分析→描述统计→交叉表。

-
选择两个指定的类别变量作为交叉表的行和列,并在窗口左下角勾选
显示簇状条形图。

-
打开
精确窗口,选择精确。

-
打开
统计窗口,选择卡方。

-
单击
确定。
SPSS进行卡方独立性检验的结果分析:
- 交叉表:

- 卡方独立性检验结果:

这里的渐近显著性和精确显著性即对应的P值,一般看渐近显著性。如果渐近显著性的值小于给定的显著性水平,那么就认为两个分类变量之间不是相互独立的。
一般只需要判定皮尔逊卡方结果的渐近显著性即可。在大样本情况下,皮尔逊卡方和似然比检验的结果会比较接近。 - 条形图:

卡方检验的前提假设
- 每个观测值都会落入一个,且只能落入一个类别中。
- 每个观测值之间相互独立。
- 卡方独立性检验的适用情况:最好在样本个数大于40,且每个类别的期望频数都大于等于5时才使用卡方独立性检验。
Fisher精确性检验
Fisher精确性检验概述:Fisher精确性检验的作用与卡方独立性检验类似,但是适用于小样本的情况,在卡方独立性检验不满足适用条件时可以采用Fisher精确性检验。
Fisher精确性检验的适用情况:超过20%的交叉表元素的期望值小于5或者至少存在一个交叉表元素的期望值小于1。
SPSS进行Fisher精确性检验的结果:

Fisher精确性检验的结果也在卡方独立性检验的结果表格中。表格的第三行费希尔精确性检验即为进行Fisher精确性检验的结果。
相关文章:
数学建模拓展内容:卡方检验和Fisher精确性检验(附有SPSS使用步骤)
卡方检验和Fisher精确性检验卡方拟合度检验卡方独立性检验卡方检验的前提假设Fisher精确性检验卡方拟合度检验 卡方拟合度检验概要:卡方拟合度检验也被称为单因素卡方检验,用于检验一个分类变量的预期频率和观察到的频率之间是否存在显著差异。 卡方拟…...
【Python学习笔记之七大数据类型】
Python数据类型:Number数字、Boolean布尔值、String字符串、list列表、tuple元组、set集合、dictionary字典 int整数 a1 print(a,type(a))float浮点数 b1.1 print(b,type(b))complex复数 c100.5j print(c,type(c))bool布尔值:True、False,true和false并非Python…...
Android系统之onFirstRef自动调用原理
前言:抽丝剥茧探究onFirstRef究竟为何在初始化sp<xxx>第一个调用?1.onFirstRef调用位置<1>.system/core/libutils/RefBase.cpp#include <utils/RefBase.h>//1.初始化强指针 void RefBase::incStrong(const void* id) const {weakref_i…...
ipv6上网配置
一般现在的宽带都已经支持ipv6了,但是需要一些配置才能真正用上ipv6。记录一下配置过程。 当前测试环境为移动宽带,光猫下面接了一个路由器,家里所有的设备都挂到这个路由器下面的。 1. 光猫改桥接 光猫在使用路由模式下,ipv6无…...
python实现聚类技术—复杂网络社团检测 附完整代码
实验内容 某跆拳道俱乐部数据由 34 个节点组成,由于管理上的分歧,俱乐部要分解成两个社团。 该实验的任务即:要求我们在给定的复杂网络上检测出两个社团。 分析与设计 实验思路分析如下: 聚类算法通常可以描述为用相似度来衡量两个数据的远近,搜索可能的划分方案,使得目标…...
如何判断两架飞机在汇聚飞行?(如何计算两架飞机的航向夹角?)内含程序源码
ok,在开始一切之前,让我先猜一猜,你是不是想百度“二维平面下如何计算两个移动物体的航向夹角?”如果是,那就请继续往下看。 首先,我们要明确一个概念:航向角≠航向夹角!࿰…...
Scipy稀疏矩阵bsr_array
文章目录基本原理初始化内置方法基本原理 bsr,即Block Sparse Row,bsr_array即块稀疏行矩阵,顾名思义就是将稀疏矩阵分割成一个个非0的子块,然后对这些子块进行存储。通过输入维度,可以创建一个空的bsr数组࿰…...
LeetCode笔记:Weekly Contest 332
LeetCode笔记:Weekly Contest 332 1. 题目一 1. 解题思路2. 代码实现 2. 题目二 1. 解题思路2. 代码实现 3. 题目三 1. 解题思路2. 代码实现 4. 题目四 1. 解题思路2. 代码实现 比赛链接:https://leetcode.com/contest/weekly-contest-332/ 1. 题目一…...
autox.js在vscode(win7)与雷神模拟器上的开发环境配置
目录 下载autox.js 安装autox.js? 在电脑上搭建autox.js开发环境 安装vscode 安装autox.js插件 雷神模拟器连接vscode 设置雷神模拟器IP 设置autox.js应用IP地址等 下载autox.js 大体来说,就是一个运行在Android平台上的JavaScript 运行环境 和…...
创建阿里云物联网平台
创建阿里云物联网平台 对云平台设备创建过程做记录,懒得再看视频 文章参考视频:https://www.bilibili.com/video/BV1jP4y1E7TJ?p26&vd_source50694678ae937a743c59db6b5ff46c31 阿里云:https://www.aliyun.com 1.物联网平…...
【链式二叉树】数据结构链式二叉树的(万字详解)
前言: 在上一篇博客中,我们已经详解学习了堆的基本知识,今天带大家进入的是二叉树的另外一种存储方式----“链式二叉树”的学习,主要用到的就是“递归思想”!! 本文目录1.链式二叉树的实现1.1前置说明1.2结…...
Koa2篇-简单介绍及使用
一.简介koa2是基于 Node.js 平台的下一代 web 开发框架, 致力于成为一个更小、更富有表现力、更健壮的 Web 框架。 可以避免异步嵌套. express中间件是异步回调,Koa2原生支持async/await二.async/awaitconst { rejects } require("assert"); const { resolve } req…...
Linux ALSA 之十一:ALSA ASOC Path 完整路径追踪
ALSA ASOC Path 完整路径追踪一、ASoc Path 简介二、ASoc Path 完整路径2.1 tinymix 设置2.2 完整路径 route一、ASoc Path 简介 如前面小节所描述,ASoc 中 Machine Driver 是 platform driver 和 codec driver 的粘合剂,audio path 离不开 FE/BE/DAI l…...
【Spring Cloud总结】1、服务提供者与服务消费者快速上手
目录 文件结构 代码 1、api 1.1实体类(Dept ) 1.2数据库 2、provider 2.1 DeptController 2.2 DeptDao 2.3 DeptService 2.4 DeptServiceImpl 2.5 application.yml 3、consumer 3.1 ConfigBean 3.2 DeptConsumerController 测试 1.启动…...
若依项目学习之登录生成验证码
若依项目学习之登录生成验证码 使用DefaultKaptcha生成验证码 /*** 验证码配置* * author ruoyi*/ Configuration public class CaptchaConfig {/*** 生成字符类型的验证码**/Bean(name "captchaProducer")public DefaultKaptcha getKaptchaBean(){DefaultKaptcha…...
计算机网络5:数据在两台计算机之间是怎样传输的?
数据在两台计算机之间的传输总的来说包括了封装和解封两个过程 封装(5层协议) 以传送一张图片为例 **应用层:**将jpg格式的图片数据转化成计算机可以识别的0101的二进制的比特流 **传输层:**将应用层传输下来的数据进行分段&…...
就现在!为元宇宙和Web3对互联网的改造做准备!
欢迎来到Hubbleverse 🌍 关注我们 关注宇宙新鲜事 📌 预计阅读时长:8分钟 本文仅代表作者个人观点,不代表平台意见,不构成投资建议。 如今,互联网是各种不同的网站、应用程序和平台的集合。由于彼此分离…...
【mysql数据库】
目录SQL数据库分页聚合函数表跟表之间的关联关系SQL中怎么将行转成列SQL注入将一张表的部分数据更新到另一张表WHERE和HAVING的区别索引索引分类如何创建及保存MySQL的索引?怎么判断要不要加索引?索引设计原理只要创建了索引,就一定会走索引吗…...
【测试开发】web 自动化测试 --- selenium4
目录1. 什么是自动化为什么要做自动化2. 为什么选择selenium作为我使用的web自动化工具3. 什么是驱动?驱动的工作原理是什么5. 第一个自动化程序演示6. selenium基本语法6.1 定位元素的方法6.2 操作页面元素6.3 等待6.4 信息打印获取当前页面句柄,窗口切…...
Elasticsearch7.8.0版本进阶——路由计算
目录一、路由计算1.1、路由计算的前提理解1.2、路由计算的概述1.3、路由计算的概述一、路由计算 1.1、路由计算的前提理解 当索引一个文档的时候,文档会被存储到一个主分片中。Elasticsearch 如何知道一个文档应该存放到哪个分片中呢?当我们创建文档时…...
SCAU期末笔记 - 数据分析与数据挖掘题库解析
这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...
Python爬虫(一):爬虫伪装
一、网站防爬机制概述 在当今互联网环境中,具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类: 身份验证机制:直接将未经授权的爬虫阻挡在外反爬技术体系:通过各种技术手段增加爬虫获取数据的难度…...
【决胜公务员考试】求职OMG——见面课测验1
2025最新版!!!6.8截至答题,大家注意呀! 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:( B ) A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...
【Java_EE】Spring MVC
目录 Spring Web MVC 编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 编辑参数重命名 RequestParam 编辑编辑传递集合 RequestParam 传递JSON数据 编辑RequestBody …...
Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信
文章目录 Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket(服务端和客户端都要)2. 绑定本地地址和端口&#x…...
C++.OpenGL (20/64)混合(Blending)
混合(Blending) 透明效果核心原理 #mermaid-svg-SWG0UzVfJms7Sm3e {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-icon{fill:#552222;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-text{fill…...
论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing
Muffin 论文 现有方法 CRADLE 和 LEMON,依赖模型推理阶段输出进行差分测试,但在训练阶段是不可行的,因为训练阶段直到最后才有固定输出,中间过程是不断变化的。API 库覆盖低,因为各个 API 都是在各种具体场景下使用。…...
Neko虚拟浏览器远程协作方案:Docker+内网穿透技术部署实践
前言:本文将向开发者介绍一款创新性协作工具——Neko虚拟浏览器。在数字化协作场景中,跨地域的团队常需面对实时共享屏幕、协同编辑文档等需求。通过本指南,你将掌握在Ubuntu系统中使用容器化技术部署该工具的具体方案,并结合内网…...
【Kafka】Kafka从入门到实战:构建高吞吐量分布式消息系统
Kafka从入门到实战:构建高吞吐量分布式消息系统 一、Kafka概述 Apache Kafka是一个分布式流处理平台,最初由LinkedIn开发,后成为Apache顶级项目。它被设计用于高吞吐量、低延迟的消息处理,能够处理来自多个生产者的海量数据,并将这些数据实时传递给消费者。 Kafka核心特…...
