当前位置: 首页 > news >正文

Redis缓存常用的读写策略

缓存常用的读写策略

缓存与DB的数据不一致问题,大多数都是指DB的数据已经修改,而缓存中的数据还是旧数据的情况。

旁路缓存模式

对于读操作:基本上所有模式都是先尝试从缓存中读,没有的话再去DB读取,然后写到缓存中

在这里插入图片描述

对于写操作:先更新数据,再删除旧缓存
在这里插入图片描述

为什么先修改数据库,而不是先删除缓存?

如果是先删除缓存的话,很容易引起数据不一致的问题。

比如写操作的过程中来了个读操作。在删除完缓存但数据库没有修改完的期间,来了个读请求,它就会把没有修改的数据进行缓存,后续再更新数据库之后,数据库的内容和缓存的内容就不一致了。

同样地,读取操作的过程中(DB读完了,但没有写入缓存中)来了个写请求,把DB数据改了,那么最终写入的缓存将会是旧的数据,因为DB已经被更新了。(只不过这次情况概率小,因为写入缓存的速度特别快,期间DB的数据很难被修改完成)

为什么修改数据库后要删除缓存,不能修改完数据库后直接修改缓存吗?

不能,在高并发场景下,同时处理多个写请求,如果某个写请求中间,完成了另外一个写请求,那么最后更新的缓存就会是旧的数据。但如果是先更新数据库,再删除缓存的话就不用考虑这么多了,因为下次访问会重新加载最新数据。

这种模式会有一致性问题吗,举个例子?

也会有的,但是概率比较小,具体如下:

  • 第一种情况,写操作的过程中来了读请求。更新完DB但缓存没有删掉的期间,如果来了一个读请求,此时会命中缓存,读取到的是缓存中的旧数据,但是这个缓存马上会被删掉,影响几乎可以忽略不计。
  • 第二章情况,读操作的过程中来了个写请求。请求1读取了DB的值,准备写入缓存但还没有写入,此时如果来了个写请求,将DB的数据修改了,那么之前读请求写入的缓存就是过期的缓存了。不过这种情况概率也比较小,因为写缓存的速度非常快,写缓存的期间数据被修改不太可能(除非高并发场景)。

解决方案,使用分布式锁保证更新DB和删除缓存的操作同步进行,不会受其它线程影响。

特点:

  • 实现简单,能保证最终一致性
  • 所有数据的首次读取都要经过DB,之后才能命中缓存(可以将热点数据可以提前放入 cache 中)
  • 写操作比较频繁的话导致 cache 中的数据会被频繁被删除,会影响缓存命中率

适用场景:读多写少(大多数场景)、不需要保证和数据库的强一致性

注意:根据CAP理论,如果需要数据库和缓存数据保持强一致,就不适合使用缓存,换句话说用:用缓存的本质就是牺牲一致性去换速度

读写穿透模式

旁路缓存模式是由用户去分别控制cache和DB的读写,而读写穿透是由cache服务去直接完成对DB的读写,这样减轻了程序员的职责,但是Redis没有提供直接将缓存数据写入DB的功能,所以比较少见。

对于读操作:也是先去缓存中找,然后再去DB中找,唯一不同的就是从DB找的过程是由cache程序自动进行的。

对于写操作:在更新DB的同时也更新cache本身(而不是删除),这个步骤是由缓存服务去实现的。

适用场景:需要保证数据的强一致性

缺点

  • 使用要求高,要求缓存程序对自身修改时能同步对DB进行更新,Redis就不支持

异步写入模式(写后模式)

也是由 cache 服务来负责 db 的读写,更新数据时先更新缓存中的数据,然后过一段时间再异步批量去更新db,常用在实时变化且又是非核心的数据中,比如点赞量、阅读量等等。

适用场景:对响应速度要求很高,但对一致性要求不高

缺点:如果写入DB前缓存挂了,数据就会丢失

相关文章:

Redis缓存常用的读写策略

缓存常用的读写策略 缓存与DB的数据不一致问题,大多数都是指DB的数据已经修改,而缓存中的数据还是旧数据的情况。 旁路缓存模式 对于读操作:基本上所有模式都是先尝试从缓存中读,没有的话再去DB读取,然后写到缓存中…...

9月产品更新 | 超10项功能升级,快来看看你的需求上线了吗?

Smartbi用户可以在官网(PC端下载),更新后便可以使用相关功能,也可以在官网体验中心体验相关功能。 接下来,我们一起来看看都有哪些亮点功能更新吧。 ▎插件商城 Smartbi麦粉社区的应用市场新增了“插件”模块&#xf…...

ARP协议工作原理析解 (详细抓包分析过程)

目录 1. ARP 协议 2. 工作原理 3. ARP 协议报文格式 4. ARP 缓存的查看和修改 5. tcpdump 抓包分析 ARP 协议工作原理 5.1 搭建 2 台虚拟机 5.2 在主机 192.168.0.155 打开一个shell命令行开启抓包监听 5.3 在主机 192.168.0.155 打开另一个shell命令行 telnet 192.168.…...

axure动态面板

最近转管理岗了,作为项目负责人,需要常常与客户交流沟通,这时候画原型的能力就是不可或缺的本领之一了,关于axure可能很多it行业者都不是很陌生,简单的功能呢大家就自行去摸索,我们这次从动态面板开始讲起。…...

[论文笔记]Making Large Language Models A Better Foundation For Dense Retrieval

引言 今天带来北京智源研究院(BAAI)团队带来的一篇关于如何微调LLM变成密集检索器的论文笔记——Making Large Language Models A Better Foundation For Dense Retrieval。 为了简单,下文中以翻译的口吻记录,比如替换"作者"为"我们&quo…...

Linux平台屏幕|摄像头采集并实现RTMP推送两种技术方案探究

技术背景 随着国产化操作系统的推进,市场对国产化操作系统下的生态构建,需求越来越迫切,特别是音视频这块,今天我们讨论的是如何在linux平台实现屏幕|摄像头采集,并推送至RTMP服务。 我们知道,Linux平台&…...

梧桐数据库|中秋节活动·抽奖领取大闸蟹

有话说 众所周不知,我的工作就是做一个国产的数据库产品—中国移动梧桐数据库(简称WuTongDB)。 近期我们举办了一次小活动,来提升梧桐数据库的搜索量和知名度,欢迎大家来参加,免费抽奖领取大闸蟹哦~~~ 具…...

Python怎么发送邮件:基础步骤与详细教程?

Python怎么发送邮件带附件?怎么使用Python发送邮件? 无论是工作中的通知、报告,还是生活中的问候、邀请,电子邮件都扮演着不可或缺的角色。那么,Python怎么发送邮件呢?AokSend将详细介绍Python发送邮件的基…...

[译] 大模型推理的极限:理论分析、数学建模与 CPU/GPU 实测(2024)

译者序 本文翻译自 2024 年的一篇文章: LLM inference speed of light, 分析了大模型推理的速度瓶颈及量化评估方式,并给出了一些实测数据(我们在国产模型上的实测结果也大体吻合), 对理解大模型推理内部工…...

vue3 响应式 API:readonly() 与 shallowReadonly()

readonly() readonly()是一个用于创建只读代理对象的函数。它接受一个对象 (不论是响应式还是普通的) 或是一个 ref&#xff0c;返回一个原值的只读代理。 类型 function readonly<T extends object>(target: T ): DeepReadonly<UnwrapNestedRefs<T>>以下…...

迁移学习与知识蒸馏对比

应用场景不同 迁移学习&#xff1a;通常用于不同但相关的任务之间的知识迁移。特别是当目标任务的数据量不足时&#xff0c;可以从一个已经在大规模数据上训练好的模型中获取有用的特征或参数。典型场景包括计算机视觉任务&#xff0c;比如你在ImageNet上训练了一个ResNet&…...

【Java-反射】

什么是反射&#xff1f; JAVA反射机制是在运行状态中&#xff0c;创建任意一个类&#xff0c;能获取这个类的所有属性和方法&#xff1b;对于任意一个对象&#xff0c;都能够调用它的任意一个方法和属性&#xff1b;这种动态获取的信息以及动态调用对象的方法的功能称为java语言…...

移动UI设计要求越来越高,最为设计师应如何迎头赶上

一、引言 在当今数字化高速发展的时代&#xff0c;移动设备已经成为人们生活中不可或缺的一部分。随着科技的不断进步和用户需求的日益增长&#xff0c;移动 UI 设计的要求也越来越高。作为移动 UI 设计师&#xff0c;我们面临着巨大的挑战&#xff0c;需要不断提升自己的能力…...

大数据-121 - Flink Time Watermark 详解 附带示例详解

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; 目前已经更新到了&#xff1a; Hadoop&#xff08;已更完&#xff09;HDFS&#xff08;已更完&#xff09;MapReduce&#xff08;已更完&am…...

国行 iPhone 15 Pro 开启苹果 Apple Intelligence 教程

一、前言苹果在 iOS 18.1 测试版上正式开启了 Apple Intelligence 的内测&#xff0c;但国行设备因政策原因不支持&#xff0c;且国行设备在硬件上被锁定。不过&#xff0c;我们可以通过一些方法来破解国行 iPhone 15 Pro&#xff0c;使其能够开启 Apple Intelligence。 以下是…...

conda、anaconda、pip、torch、pytorch、tensorflow到底是什么东西?(转载自本人的知乎回答)

转载自本人的知乎回答&#xff08;截止2024年9月&#xff0c;1700赞同&#xff0c;2400收藏&#xff09; https://www.zhihu.com/question/566592612/answer/3063465880 如果你是一个大四的CS准研究生回去补基础课&#xff0c;假如是科班CS甚至科班EE的话那你基础也太差了。你…...

数据库系列之GaussDB数据库中逻辑对象关系简析

初次接触openGauss或GaussDB数据库的逻辑对象&#xff0c;被其中的表空间、数据库、schema和用户之间的关系&#xff0c;以及授权管理困惑住了&#xff0c;与熟悉的MySQL数据库的逻辑对象又有明显的不同。本文旨在简要梳理下GaussDB数据库逻辑对象之间的关系&#xff0c;以加深…...

如何进行不同数据库的集群操作?--从部署谈起,今天来看MySQL和NoSql数据库Redis的集群

篇幅较长&#xff0c;主要分为mysql和Redis两部分。找想要的部分可见目录食用。。 目录 什么是集群&#xff1f;为什么要集群&#xff1f; 1.1 数据库主要分为两大类&#xff1a;关系型数据库与 NoSQL 数据库 1.2 为什么还要用 NoSQL 数据库呢&#xff1f; ----------------…...

第 6 章图像聚类

本章将介绍几种聚类方法&#xff0c;并展示如何利用它们对图像进行聚类&#xff0c;从而寻找相似的图像组。聚类可以用于识别、划分图像数据集&#xff0c;组织与导航。此外&#xff0c;我们还会对聚类后的图像进行相似性可视化。 6.1 K-means聚类 K-means 是一种将输入数据划…...

HC-SR501人体红外传感器详解(STM32)

目录 一、介绍 二、传感器原理 1.原理图 2.引脚描述 3.工作原理介绍 三、程序设计 main.c文件 body_hw.h文件 body_hw.c文件 四、实验效果 五、资料获取 项目分享 一、介绍 HC-SR501人体红外模块是基于红外线技术的自动控制模块&#xff0c;采用德国原装进口LHI77…...

盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来

一、破局&#xff1a;PCB行业的时代之问 在数字经济蓬勃发展的浪潮中&#xff0c;PCB&#xff08;印制电路板&#xff09;作为 “电子产品之母”&#xff0c;其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透&#xff0c;PCB行业面临着前所未有的挑战与机遇。产品迭代…...

从WWDC看苹果产品发展的规律

WWDC 是苹果公司一年一度面向全球开发者的盛会&#xff0c;其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具&#xff0c;对过去十年 WWDC 主题演讲内容进行了系统化分析&#xff0c;形成了这份…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)

宇树机器人多姿态起立控制强化学习框架论文解析 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架&#xff08;一&#xff09; 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...

AI编程--插件对比分析:CodeRider、GitHub Copilot及其他

AI编程插件对比分析&#xff1a;CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展&#xff0c;AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者&#xff0c;分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...

分布式增量爬虫实现方案

之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面&#xff0c;避免重复抓取&#xff0c;以节省资源和时间。 在分布式环境下&#xff0c;增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路&#xff1a;将增量判…...

鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南

1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发&#xff0c;使用DevEco Studio作为开发工具&#xff0c;采用Java语言实现&#xff0c;包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型&#xff08;LLM&#xff09;参数规模的增长&#xff0c;推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长&#xff0c;而KV缓存的内存消耗可能高达数十GB&#xff08;例如Llama2-7B处理100K token时需50GB内存&a…...

【LeetCode】3309. 连接二进制表示可形成的最大数值(递归|回溯|位运算)

LeetCode 3309. 连接二进制表示可形成的最大数值&#xff08;中等&#xff09; 题目描述解题思路Java代码 题目描述 题目链接&#xff1a;LeetCode 3309. 连接二进制表示可形成的最大数值&#xff08;中等&#xff09; 给你一个长度为 3 的整数数组 nums。 现以某种顺序 连接…...

给网站添加live2d看板娘

给网站添加live2d看板娘 参考文献&#xff1a; stevenjoezhang/live2d-widget: 把萌萌哒的看板娘抱回家 (ノ≧∇≦)ノ | Live2D widget for web platformEikanya/Live2d-model: Live2d model collectionzenghongtu/live2d-model-assets 前言 网站环境如下&#xff0c;文章也主…...

windows系统MySQL安装文档

概览&#xff1a;本文讨论了MySQL的安装、使用过程中涉及的解压、配置、初始化、注册服务、启动、修改密码、登录、退出以及卸载等相关内容&#xff0c;为学习者提供全面的操作指导。关键要点包括&#xff1a; 解压 &#xff1a;下载完成后解压压缩包&#xff0c;得到MySQL 8.…...