jina的Embedding Reranker
插入向量库是否需要使用 Jina 的 Embedding 和 Reranker 取决于你希望如何处理和优化语义搜索的质量。以下是使用 Jina Embedding 和 Reranker 的原因,以及它们如何作用于插入向量库的流程。
1. Jina 的 Embedding 作用
Jina 是一个流行的开源框架,用于构建多模态搜索系统。Jina 的 Embedding 模型可以将文本或其他数据转换成向量表示,方便存储在向量数据库(如 Milvus)中,支持更高效的相似度检索。
如果你希望在 Milvus 中进行基于语义的搜索(而不仅仅是基于关键词匹配),则可以使用 Jina 提供的 Embedding 模型来将术语和相关数据转换为向量,并将这些向量存储在 Milvus 中。
Embedding 的步骤:
- 获取文本或术语:如 “收入”、“净利润” 等术语。
- 使用 Jina 的 Embedding 模型:将这些术语转换为语义向量(即高维度向量表示)。
- 将向量插入到 Milvus:通过向量表示进行高效的相似度搜索。
什么时候需要 Embedding?
- 当你需要语义匹配时,比如用户可能输入的是同义词或类似的概念。Embedding 会捕捉到词语之间的语义关系,而不仅仅是字符串匹配。
- 提高查询改写的准确性,Embedding 向量化后的术语可以更好地进行相似度计算,找到最相关的术语进行改写。
2. Reranker 的作用
Reranker 是一个重排序模型,通常在搜索结果返回之后,用于根据更复杂的规则或模型对结果进行二次排序。Reranker 在以下情况下是有用的:
- 多阶段检索:在初步检索后,可以使用 Reranker 对返回的结果根据更多上下文或更细粒度的语义关系进行重排序,确保最相关的结果排在前面。
- 提高搜索精度:Reranker 可以基于上下文和用户查询更好地优化结果排序。
3. 如何结合 Jina Embedding 和 Reranker?
- Embedding:负责将术语和用户查询转化为语义向量。这一步是插入向量库之前的必要步骤,以便向量库可以高效处理语义搜索。
- Reranker:在你从 Milvus 中检索到最相关的术语后,使用 Reranker 对结果进行重排序。这一步确保返回的结果更加符合用户的意图。
4. 如何将它们结合到你的现有代码中?
更新 MilvusClient
,使用 Jina 的 Embedding 模型
首先,确保你已经安装了 Jina 的必要依赖:
pip install jina
然后你可以使用 Jina 的预训练 Embedding 模型来将术语转化为向量。
from jina import Flow
from jina.types.document.generators import from_dict
from pymilvus import Collection, connectionsclass MilvusClient:def __init__(self):# 连接 Milvus 服务器connections.connect(alias="default", host="localhost", port="19530")# 定义 Collection Schemaself.collection_name = "industry_terms"self.collection = Collection(name=self.collection_name)# Jina 流,用于 Embeddingself.flow = Flow().add(uses='jinahub://TransformerTorchEncoder')def embed_and_insert_terms(self, term_data_list):"""1. 使用 Jina 进行 Embedding2. 插入向量数据到 Milvus 知识库"""# 准备插入数据field_names = [data['field_name'] for data in term_data_list]terms = [data['term'] for data in term_data_list]source_tables = [data['source_table'] for data in term_data_list]descriptions = [data['description'] for data in term_data_list]data_types = [data['data_type'] for data in term_data_list]related_fields = [data['related_fields'] for data in term_data_list]explanations = [data['term_explanation'] for data in term_data_list]# 通过 Jina 的 Embedding 将术语转换为向量docs = from_dict([{"text": term} for term in terms])with self.flow:embedding_docs = self.flow.post(on='/index', inputs=docs)# 从嵌入结果中提取向量embeddings = [doc.embedding for doc in embedding_docs]# 插入向量和原始数据到 Milvus 中self.collection.insert([field_names, terms, source_tables, descriptions, data_types, related_fields, explanations, embeddings])print(f"成功插入了 {len(term_data_list)} 条数据到 Milvus 知识库")
更新 search_terms
,进行语义搜索并使用 Reranker
class MilvusClient:# 初始化和插入方法如上def search_terms(self, query: str):"""1. 使用 Jina 进行查询的 Embedding。2. 在 Milvus 中进行相似度搜索。3. 使用 Reranker 对搜索结果进行重排序。"""# Step 1: 使用 Jina 进行 Embeddingdocs = from_dict([{"text": query}])with self.flow:query_docs = self.flow.post(on='/search', inputs=docs)query_embedding = query_docs[0].embedding# Step 2: 在 Milvus 中进行向量搜索search_results = self.collection.search(data=[query_embedding], anns_field="embedding", # 搜索字段为 embeddingparam={"metric_type": "L2", "params": {"nprobe": 10}},limit=10 )# Step 3: 使用 Reranker 对结果进行重排序(此处是简单的排序示例)sorted_results = sorted(search_results, key=lambda x: x.distance)if len(sorted_results) > 0:return sorted_results[0].entities[0]["term"] # 返回最相关的术语else:return None # 如果没有找到匹配项,返回 None
5. 使用 Jina 和 Milvus 的工作流程
- 术语数据插入:使用 Jina 的 Embedding 模型,将术语转换为向量并存入 Milvus 向量库。
- 用户查询处理:
- 首先对用户的查询进行 Embedding。
- 使用生成的向量在 Milvus 中进行相似度搜索,找到最接近的术语。
- Reranker 重新排序:对 Milvus 返回的候选结果进行重排序,确保最相关的结果排在前面。
- 返回改写结果:使用改写的术语查询 Clude 模型生成 SQL。
6. 总结
在插入数据之前使用 Jina 的 Embedding 模型来生成术语的向量表示是非常有必要的,它将大大提高语义搜索的精度。然后,搜索后可以使用 Reranker 对候选结果进行重排序,以进一步提高查询的准确性。
具体来说:
- Embedding:确保术语能够在 Milvus 中进行语义级别的搜索,而不是基于关键词匹配。
- Reranker:进一步提升搜索结果的相关性,确保最符合用户查询意图的术语排在首位。
你可以根据需求选择合适的 Embedding 模型和 Reranker 机制,来优化整体查询流程。
相关文章:
jina的Embedding Reranker
插入向量库是否需要使用 Jina 的 Embedding 和 Reranker 取决于你希望如何处理和优化语义搜索的质量。以下是使用 Jina Embedding 和 Reranker 的原因,以及它们如何作用于插入向量库的流程。 1. Jina 的 Embedding 作用 Jina 是一个流行的开源框架,用于…...

Prompt Engineer: 使用Thought来提升LLM的回复能力
这是一个小的实验, 用来测试思维导图这种表达形式对于LLM在答案组织上是否会有帮助 结构化Prompt 根据目前的测试来看, 结构化Ptompt在实践中有着很好的可读性以及可维护性. (通常来说我使用Markdown格式来作为输入的格式, 虽然在内容完整性上存在问题, 但是我是不喜欢写丑陋…...
tekton构建标准ci(clone repo, test, build push img)
场景介绍 我们在上一篇文章中构建了一个最简单的ci,接下来我们对我们的github的项目构建一个较标准的ci。 Tekton简介,安装和构建最简单ci/cd-CSDN博客文章浏览阅读239次,点赞2次,收藏2次。本文介绍了tekton是什么,如…...

【电力系统】复杂网络分析在电力系统规范中的应用
摘要 复杂网络分析在电力系统中的应用为理解和优化电力系统的运行提供了新的视角。本文探讨了复杂网络理论在电力系统规范中的应用,通过分析电力系统的拓扑结构、节点重要性和脆弱性,提出了优化电力系统设计和运行的新策略。仿真结果表明,复…...

CDGA|推动数据治理与传统产业深度融合:策略与实践路径
在数字化浪潮席卷全球的今天,数据已成为推动经济社会发展的关键生产要素。传统产业,作为国民经济的基石,正面临着前所未有的转型挑战与机遇。如何让数据治理这一现代管理理念与实践方法深度融入传统产业,促进其转型升级与高质量发…...

【FastAPI】离线使用Swagger UI 或 国内网络如何快速加载Swagger UI
在FastAPI中,默认情况下,当应用启动时,Swagger UI 会通过在线加载 Swagger UI 的静态资源。这意味着如果应用运行在没有互联网连接的环境中,默认的 Swagger 文档页面将无法加载。 为了在离线环境中使用 Swagger UI,你…...
Linux:从入门到放弃
目录 一、基础巩固Linux:常用命令 二、实战应用Linux:CentOS7基础配置Linux:CentOS7安装MySQL 三、常见问题Linux:yum源失效问题 一、基础巩固 Linux:常用命令 二、实战应用 Linux:CentOS7基础配置 Lin…...

SVM 监督学习
一、分类问题 利用一条直线分类存在很多问题 二、SVM 支持向量机 其核心思想是通过在特征空间中找到一个最优的超平面来进行分类,并且间隔最大。分类面尽可能远离样本点,宽度越大越好。 适用于中小型复杂数据集的分类。 三、硬间隔和软间隔 硬&#x…...
奖励模型的训练
文章目录 训练方法训练策略代码实践由于 RLHF 的训练过程中需要依赖大量的人类偏好数据进行学习,因此很难在训练过程中要求人类标注者实时提供偏好反馈。为此,我们需要训练一个模型来替代人类在 RLHF 训练过程中实时提供反馈,这个模型被称为奖励模型。在训练开始前,我们需要…...

Ubuntu22.04之禁止内核自动更新(二百六十八)
简介: CSDN博客专家、《Android系统多媒体进阶实战》一书作者 新书发布:《Android系统多媒体进阶实战》🚀 优质专栏: Audio工程师进阶系列【原创干货持续更新中……】🚀 优质专栏: 多媒体系统工程师系列【…...

kaggle题-房价预测(Pytorch),手把手教,全文代码解释
房价预测 本题是经典的通过表格数据去预测最终值,主要分为几大步骤: 一.将数据集修改为可以代入到网络模型的数字,因为给的数据大部分都是str类型,是无法直接放到网络模型里跑的,例如下图,很多标签值为str类…...

PulseSensor心率传感器详解(STM32)
目录 一、介绍 二、传感器原理 1.接线图 2.引脚描述 3.工作原理:光电容积法原理 4.工作原理:心率采样数据处理算法 三、程序设计 main.c文件 adcx.h文件 adc.c文件 四、实验效果 五、资料获取 项目分享 一、介绍 PulseSensor传感器是一种基…...

NISP 一级 | 3.1 网络基础知识
关注这个证书的其他相关笔记:NISP 一级 —— 考证笔记合集-CSDN博客 0x01:Internet 和 TCP/IP 协议 因特网(Internet)通过 TCP/IP 协议将遍布在全世界各地的计算机互联,从而形成超级计算机网络。因特网为用户提供了非…...

模拟网络丢包常用方法以及工具
文章目录 背景常用方法代码实现使用方法测试代码 使用网络流量控制工具 常用工具Clumsy 背景 在软件开发过程中,经常需要模拟不同的网络环境来测试应用在不同条件下的表现。 这些模拟可以采用多种方式进行,包括在代码中实现随机丢包、随机延时、乱序&am…...
ABC 370 E - Avoid K Partition
原题链接:E - Avoid K Partition 题意:给长度为n的数组,将数组划分成任意份,但是每一份的总和都不能是k,问有多少种分割方法。 思路:dp,f[i],代表前i个元素满足题意的划分的总和&a…...

C++: set与map容器的介绍与使用
本文索引 前言1. 二叉搜索树1.1 概念1.2 二叉搜索树操作1.2.1 查找与插入1.2.2 删除1.2.3 二叉搜索树实现代码 2. 树形结构的关联式容器2.1 set的介绍与使用2.1.1 set的构造函数2.1.2 set的迭代器2.1.3 set的容量2.1.4 set的修改操作 2.2 map的介绍与使用2.2.1 map的构造函数2.…...

单片机-STM32 看门狗(八)
目录 一、看门狗概念 1、定义: 二、单片机中的看门狗 1、功能描述: 2、看门狗设置部分 预分频寄存器(IWDG_PR) 3、窗口看门狗 特性: 4、看门狗配置: 一、看门狗概念 看门狗--定时器(不属于基本定时器、通用定…...

iOS 18.1将上线新功能,可惜这波国内的小伙伴无缘了
在科技巨头苹果持续推动其生态系统全球化的进程中,最新的iOS 18.1、iPadOS 18.1及macOS 15.1开发者测试版发布,不仅为开发者们带来了新功能的预览,还悄然间对Apple智能功能的地区限制进行了微妙而重要的调整。 这一变化,虽看似细…...
MySQL中DML操作(二)
默认值处理(DEFAULT) 在MySQL中可以使用DEFAULT为列设定一个默认值。如果在插入数据时并未指定该列的值,那么MySQL将默认值添加到该列中。 创建表时指定列的默认值 CREATE TABLE 表名(列名 类型 default 默认值......); 示例:…...

LLMs技术 | 整合Ollama实现本地LLMs调用
前言 近两年AIGC发展的非常迅速,从刚开始的只有ChatGPT到现在的很百家争鸣。从开始的大参数模型,再到后来的小参数模型,从一开始单一的文本模型到现在的多模态模型等等。随着一起进步的不仅仅是模型的多样化,还有模型的使用方式。…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...
数据链路层的主要功能是什么
数据链路层(OSI模型第2层)的核心功能是在相邻网络节点(如交换机、主机)间提供可靠的数据帧传输服务,主要职责包括: 🔑 核心功能详解: 帧封装与解封装 封装: 将网络层下发…...

用docker来安装部署freeswitch记录
今天刚才测试一个callcenter的项目,所以尝试安装freeswitch 1、使用轩辕镜像 - 中国开发者首选的专业 Docker 镜像加速服务平台 编辑下面/etc/docker/daemon.json文件为 {"registry-mirrors": ["https://docker.xuanyuan.me"] }同时可以进入轩…...

Android 之 kotlin 语言学习笔记三(Kotlin-Java 互操作)
参考官方文档:https://developer.android.google.cn/kotlin/interop?hlzh-cn 一、Java(供 Kotlin 使用) 1、不得使用硬关键字 不要使用 Kotlin 的任何硬关键字作为方法的名称 或字段。允许使用 Kotlin 的软关键字、修饰符关键字和特殊标识…...

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列,以便知晓哪些列包含有价值的数据,…...

深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用
文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么?1.1.2 感知机的工作原理 1.2 感知机的简单应用:基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...
Caliper 配置文件解析:fisco-bcos.json
config.yaml 文件 config.yaml 是 Caliper 的主配置文件,通常包含以下内容: test:name: fisco-bcos-test # 测试名称description: Performance test of FISCO-BCOS # 测试描述workers:type: local # 工作进程类型number: 5 # 工作进程数量monitor:type: - docker- pro…...
django blank 与 null的区别
1.blank blank控制表单验证时是否允许字段为空 2.null null控制数据库层面是否为空 但是,要注意以下几点: Django的表单验证与null无关:null参数控制的是数据库层面字段是否可以为NULL,而blank参数控制的是Django表单验证时字…...

【UE5 C++】通过文件对话框获取选择文件的路径
目录 效果 步骤 源码 效果 步骤 1. 在“xxx.Build.cs”中添加需要使用的模块 ,这里主要使用“DesktopPlatform”模块 2. 添加后闭UE编辑器,右键点击 .uproject 文件,选择 "Generate Visual Studio project files",重…...

Python训练营-Day26-函数专题1:函数定义与参数
题目1:计算圆的面积 任务: 编写一个名为 calculate_circle_area 的函数,该函数接收圆的半径 radius 作为参数,并返回圆的面积。圆的面积 π * radius (可以使用 math.pi 作为 π 的值)要求:函数接收一个位置参数 radi…...