数学建模笔记——TOPSIS[优劣解距离]法
数学建模笔记——TOPSIS[优劣解距离法]
- TOPSIS(优劣解距离)法
- 1. 基本概念
- 2. 模型原理
- 3. 基本步骤
- 4. 典型例题
- 4.1 矩阵正向化
- 4.2 正向矩阵标准化
- 4.3 计算得分并归一化
- 4.4 python代码实现
TOPSIS(优劣解距离)法
1. 基本概念
C. L.Hwang和 K.Yoon于1981年首次提出 TOPSIS(Technique for Order Preference by Similarity to an Ideal Solution),可翻译为逼近理想解排序法,国内常简称为优劣解距离法。
TOPSIS法是一种常用的综合评价方法,能充分利用原始数据的信息,其结果能精确地反映各评价方案之间的差距。
TOPSIS法引入了两个基本概念:
- 理想解:设想的最优的解(方案),它的各个属性值都达到各备选方案中的最好的值;
- 负理想解:设想的最劣的解(方案),它的各个属性值都达到各备选方案中的最坏的值。方案排序的规则是把各备选方案与理想解和负理想解做比较,若其中有一个方案最接近理想解,而同时又远离负理想解,则该方案是备选方案中最好的方案。TOPSIS通过最接近理想解且最远离负理想解来确定最优选择。

2. 模型原理
TOPSIS法是一种理想目标相似性的顺序选优技术,在多目标决策分析中是一种非常有效的方法。它通过归一化后(去量纲化)的数据规范化矩阵,找出多个目标中最优目标和最劣目标(分别用理归想一解化和反理想解表示),分别计算各评价目标与理想解和反理想解的距离,获得各目标与理想解的贴近度,按理想解贴近度的大小排序,以此作为评价目标优劣的依据。贴近度取值在0~1之间,该值愈接近1,表示相应的评价目标越接近最优水平;反之,该值愈接近0,表示评价目标越接近最劣水平。
3. 基本步骤
-
将原始矩阵正向化
将原始矩阵正向化,就是要将所有的指标类型统一转化为极大型指标
-
将正向化矩阵标准化
标准化的方法有很多种,其主要目的就是去除量纲的影响,保证不同评价指标在同一数量级,且数据大小排序不
-
计算得分并归一化
S i = D i − D i + + D i − S_{i}=\frac{D_{i}^{-}}{D_{i}^{+}+D_{i}^{-}} Si=Di++Di−Di−,其中 S i S_{i} Si为得分, D i + {D_{i}^{+}} Di+为评价对象与最大值的距离, D i − D_{i}^{-} Di−
为评价对象与最小值的距离。
4. 典型例题
明星Kun想找一个对象,但喜欢他的人太多,不知道怎么选,经过层层考察,留下三个候选人。他认为身高165是最好的,体重在90-100斤是最好的。
候选人 颜值 牌气(争吵次数) 身高 体重 A 9 10 175 120 B 8 7 164 80 C 6 3 157 90
4.1 矩阵正向化
常见的指标类型:
指标名称 | 指标特点 | 例子 |
---|---|---|
极大型 (效益型) 指标 | 越大(多)越好 | 成绩、 GDP增速、 企业利润 |
极小型 (成本型) 指标 | 越小(少)越好 | 费用、 坏品率、污染程度 |
中间型指标 | 越接近某个值越好 | 水质量评估时的PH值 |
区间型指标 | 落在某个区间最好 | 体温、 水中植物性营养物量 |
在 TOPSIS 方法中,就是要将所有指标进行统一正向化,即统一转化为极大型指标。 那么就需要极小型、中间型以及区间型的指标进行转化为极大型指标。
指标名称 | 公式 |
---|---|
极大型(效益型)指标 | / |
极小型(成本型)指标 | x ~ = m a x − x \tilde{x} = max-x x~=max−x, x ~ \tilde{x} x~为指标值, m a x max max为指标最大值, x x x为指标值 |
中间型指标 | { x i } \{x_i\} {xi} 是一组中间型序列,最优值是 x b e s t x_{best} xbest,$M = max{ |
区间型指标 | x i {x_i} xi是一组区间型序列,最佳区间为 [ a , b ] [a,b] [a,b],正向化公式如下 M = m a x { a − m i n { x i } , m a x { x i } − b } , x ~ i = { 1 − a − x i M , x i < a 1 , a ≤ x i ≤ b 1 − x i − b M , x i > b M=max\{a-min\{x_i\}, max\{x_i\}-b\}, \widetilde{x}_i=\begin{cases}1-\frac{a-x_i}{M}, x_i<a\\1, a\leq x_i\leq b\\1-\frac{x_i-b}{M}, x_i>b\end{cases} M=max{a−min{xi},max{xi}−b},x i=⎩ ⎨ ⎧1−Ma−xi,xi<a1,a≤xi≤b1−Mxi−b,xi>b |
-
颜值为极大型指标
-
脾气为极小型指标
候选人 颜值 m a x max max m a x − x max-x max−x A 10 10 0 B 7 10 3 C 3 10 7 -
身高为中间型指标
候选人 身高 x b e s t x_{best} xbest | x i − x b e s t x_i-x_{best} xi−xbest| x ^ i \hat{x}_i x^i A 175 165 10 1 B 164 165 1 1/10 C 157 165 8 8/10 -
体重为区间型指标
候选人 体重 M M M x ^ i \hat{x}_i x^i A 120 20 0 B 80 20 1/2 C 90 20 1
正向化后的矩阵为
候选人 | 颜值 | 牌气(争吵次数) | 身高 | 体重 |
---|---|---|---|---|
A | 9 | 0 | 0 | 0 |
B | 8 | 3 | 0.9 | 0.5 |
C | 6 | 7 | 0.2 | 1 |
4.2 正向矩阵标准化
标准化的目的是消除不同指标量纲的影响
假设有n个要评价的对象,m个评价指标(已经正向化了)构成的正向化矩阵如下:
X = [ x 11 x 12 ⋯ x 1 m x 21 x 22 ⋯ x 2 m ⋮ ⋮ ⋱ ⋮ x n 1 x n 2 ⋯ x n m ] X=\begin{bmatrix}x_{11}&x_{12}&\cdots&x_{1m}\\x_{21}&x_{22}&\cdots&x_{2m}\\\vdots&\vdots&\ddots&\vdots\\x_{n1}&x_{n2}&\cdots&x_{nm}\end{bmatrix} X= x11x21⋮xn1x12x22⋮xn2⋯⋯⋱⋯x1mx2m⋮xnm
那么对其标准化后的矩阵记为Z,Z的每一个元素:
z i j = x i j ∑ i = 1 n x i j 2 z_{ij}=\frac{x_{ij}}{\sqrt{\sum_{i=1}^nx_{ij}^2}} zij=∑i=1nxij2xij
即(每一个元素/根号下所在列元素的平方和)得到标准化矩阵Z:
Z = [ z 11 z 12 ⋯ z 1 m z 21 z 22 ⋯ z 2 m ⋮ ⋮ ⋱ ⋮ z n 1 z n 2 ⋯ z n m ] Z=\begin{bmatrix}z_{11}&z_{12}&\cdots&z_{1m}\\z_{21}&z_{22}&\cdots&z_{2m}\\\vdots&\vdots&\ddots&\vdots\\z_{n1}&z_{n2}&\cdots&z_{nm}\end{bmatrix} Z= z11z21⋮zn1z12z22⋮zn2⋯⋯⋱⋯z1mz2m⋮znm
标准化后,还需要给不同指标加上权重,采用的权重确定方法有层次分析法、熵权法、Delphi法、对数最小二乘法。这里认为各个指标权重相同。
对上述矩阵进行标准化,得
候选人 | 颜值 | 牌气(争吵次数) | 身高 | 体重 |
---|---|---|---|---|
A | 0.669 | 0 | 0 | 0 |
B | 0.595 | 0.394 | 0.976 | 0.447 |
C | 0.446 | 0.919 | 0.217 | 0.894 |
4.3 计算得分并归一化
定义最大值:
Z + = ( m a x { z 11 , z 21 , ⋯ , z n 1 } , m a x { z 12 , z 22 , ⋯ , z n 2 } , ⋯ , m a x { z 1 m , z 2 m , ⋯ , z n m } ) Z^+=(max\{z_{11},z_{21},\cdots,z_{n1}\},max\{z_{12},z_{22},\cdots,z_{n2}\},\cdots,max\{z_{1m},z_{2m},\cdots,z_{nm}\}) Z+=(max{z11,z21,⋯,zn1},max{z12,z22,⋯,zn2},⋯,max{z1m,z2m,⋯,znm})
定义最小值:
Z − = ( m i n { z 11 , z 21 , ⋯ , z n 1 } , m i n { z 12 , z 22 , ⋯ , z n 2 } , ⋯ , m i n { z 1 m , z 2 m , ⋯ , z n m } ) Z^-=(min\{z_{11},z_{21},\cdots,z_{n1}\},min\{z_{12},z_{22},\cdots,z_{n2}\},\cdots,min\{z_{1m},z_{2m},\cdots,z_{nm}\}) Z−=(min{z11,z21,⋯,zn1},min{z12,z22,⋯,zn2},⋯,min{z1m,z2m,⋯,znm})
定义第i (i=1,2,…,n) 个评价对象与最大值的距离:
D i + = ∑ j = 1 m ( Z j + − z i j ) 2 D_i^+=\sqrt{\sum_{j=1}^m(Z_j^+-z_{ij})^2} Di+=j=1∑m(Zj+−zij)2
定义第i (i=1,2,…,n) 个评价对象与最小值的距离:
D i − = ∑ j = 1 m ( Z j − − z i j ) 2 D_i^-=\sqrt{\sum_{j=1}^m(Z_j^--z_{ij})^2} Di−=j=1∑m(Zj−−zij)2
那么,我们可以计算得出第 i( i=1,2,…,n) 个评价对象未归一化的得分:
S i = D i − D i + + D i − S_i=\frac{D_i^-}{D_i^++D_i^-} Si=Di++Di−Di−
很明显 0≤Si≤1,且 Si 越大 Di+ 越小,即越接近最大值。
我们可以将得分归一化并换成百分制:
S i ~ = S i ∑ i = 1 n S i × 100 \widetilde{S_{\mathrm{i}}}=\frac{S_{\mathrm{i}}}{\sum_{i=1}^{n}S_{\mathrm{i}}}\times100 Si =∑i=1nSiSi×100
4.4 python代码实现
import numpy as np# 从用户输入参评数目和指标数目
print("请输入参评数目:")
n = int(input())
print("请输入指标数目:")
m = int(input())# 接受用户输入的类型矩阵
print("请输入类型矩阵:1. 极大型 2. 极小型 3. 中间型 4.区间型")
kind = input().split(" ")# 接受用户输入的矩阵并转化为向量
print("请输入矩阵:")
A = np.zeros(shape=(n, m))
for i in range(n):A[i] = input().split(" ")A[i] = list(map(float, A[i]))
print("输入矩阵为:\n{}".format(A))# 极小型指标转化为极大型指标的函数def minTomax(maxx, x):x = list(x)ans = [[(maxx-e) for e in x]]return np.array(ans)# 中间型指标转化为极大型指标的函数def midTomax(bestx, x):x = list(x)h = [abs(e-bestx) for e in x]M = max(h)if M == 0:M = 1 # 防止最大差值为0的情况ans = [[1-(e/M) for e in h]]return np.array(ans)# 区间型指标转化为极大型指标的函数def regTomax(lowx, highx, x):x = list(x)M = max(lowx-min(x), max(x)-highx)if M == 0:M = 1 # 防止最大差值为0的情况ans = []for i in range(len(x)):if x[i] < lowx:ans.append(1-(lowx-x[i])/M)elif x[i] > highx:ans.append(1-(x[i]-highx)/M)else:ans.append(1)return np.array([ans])# 同一指标类型,将所有指标转化为极大型指标
X = np.zeros(shape=(n, 1))
for i in range(m):if kind[i] == "1":v = np.array(A[:, i])elif kind[i] == "2":maxA = max(A[:, i])v = minTomax(maxA, A[:, i])elif kind[i] == "3":print("类型三,请输入最优值:")bestA = eval(input())v = midTomax(bestA, A[:, i])elif kind[i] == "4":print("类型四,请输入区间[a,b]值a:")lowA = eval(input())print("类型四,请输入区间[a,b]值b:")highA = eval(input())v = regTomax(lowA, highA, A[:, i])if i == 0:X = v.reshape(-1, 1) # 如果是第一个指标,直接赋值else:X = np.hstack((X, v.reshape(-1, 1))) # 如果不是第一个指标,横向拼接
print("统一指标后矩阵为:\n{}".format(X))# 对统一指标后的矩阵进行标准化处理
X = X.astype(float) # 将X转化为浮点型
for i in range(m):X[:, i] = X[:, i]/np.sqrt(sum(X[:, i]**2)) # 对每一列进行归一化处理,即除以该列的欧几里得范数
print("标准化后矩阵为:\n{}".format(X))# 最大值和最小值距离的计算
x_max = np.max(X, axis=0) # 计算每一列的最大值
x_min = np.min(X, axis=0) # 计算每一列的最小值
# 计算每一个参评对象与最优情况的距离d+
d_z = np.sqrt(np.sum(np.square(X-np.tile(x_max, (n, 1))), axis=1))
# 计算每一个参评对象与最差情况的距离d-
d_f = np.sqrt(np.sum(np.square(X-np.tile(x_min, (n, 1))), axis=1))
print("每个指标的最大值为:{}".format(x_max))
print("每个指标的最小值为:{}".format(x_min))# 计算每一个参评对象的综合得分
s = d_f/(d_f+d_z) # 根据d+和d-计算每一个参评对象的得分,其中s接近1表示越好,接近0表示越差
Score = 100*s/sum(s) # 将得分转换为百分制
for i in range(n):print(f"第{i+1}个参评对象的得分为:{Score[i]}")
输入:
请输入参评数目:
3
请输入指标数目:
4
请输入类型矩阵:1. 极大型 2. 极小型 3. 中间型 4.区间型
1 2 3 4
请输入矩阵:
9 10 175 120
8 7 164 80
6 3 157 90
输入矩阵为:
[[ 9. 10. 175. 120.][ 8. 7. 164. 80.][ 6. 3. 157. 90.]]
类型三,请输入最优值:
165
类型四,请输入区间[a,b]值a:
90
类型四,请输入区间[a,b]值b:
100
输出:
统一指标后矩阵为:
[[9. 0. 0. 0. ][8. 3. 0.9 0.5][6. 7. 0.2 1. ]]
标准化后矩阵为:
[[0.66896473 0. 0. 0. ][0.59463532 0.3939193 0.97618706 0.4472136 ][0.44597649 0.91914503 0.21693046 0.89442719]]
每个指标的最大值为:[0.66896473 0.91914503 0.97618706 0.89442719]
每个指标的最小值为:[0.44597649 0. 0. 0. ]
第1个参评对象的得分为:8.886366735657832
第2个参评对象的得分为:45.653341055701134
第3个参评对象的得分为:45.46029220864103
相关文章:

数学建模笔记——TOPSIS[优劣解距离]法
数学建模笔记——TOPSIS[优劣解距离法] TOPSIS(优劣解距离)法1. 基本概念2. 模型原理3. 基本步骤4. 典型例题4.1 矩阵正向化4.2 正向矩阵标准化4.3 计算得分并归一化4.4 python代码实现 TOPSIS(优劣解距离)法 1. 基本概念 C. L.Hwang和 K.Yoon于1981年首次提出 TOPSIS(Techni…...

证书学习(四)X.509数字证书整理
目录 一、X.509证书 介绍1.1 什么是 X.509证书?1.2 什么是 X.509标准?1.3 什么是 PKI?二、X.509证书 工作原理2.1 证书认证机构(CA)2.1 PKI 的基础——加密算法2.2 PKI 证书编码三、X.509证书 结构3.1 证书字段3.2 证书扩展背景: 我们在日常的开发过程中,经常会遇到各种…...

氚云,低代码领风者如何破解行业的“中式焦虑”?
To B生意“难做”,很多公司的苦恼都难以掩盖。 上半年,一个“中国软件行业全军覆没”的帖子引发热烈讨论,评论竟是赞同的居多。那些以实现上市为目标的SaaS公司,或者已经上市的、主营业务为To B的企业,其整体的业绩状…...

“深入解析:MySQL半同步复制的配置指南与实践技巧“
本次配置是在已搭建好主从复制的架构中进行配置 配置环境 操作系统 master节点 slave节点 centos7 8.0.37 8.0.37 配置半同步复制 配置master 安装master半同步复制插件 INSTALL PLUGIN rpl_semi_sync_source SONAME semisync_source.so; 在MySQL的配置文件中添加配置…...

第四届长城杯部分wp
还是太菜了,要经常练了 1.BrickGame 读源码可以看到时间的值是由js设定的,所以控制台将timeleft的时间改成999999 通过游戏就可以得到flag 2.SQLUP 一道文件上传的题目,在登陆页面我用admin和1登陆成功了,但是按照正常的应该是…...

打造无死角安防网:EasyCVR平台如何助力智慧警务实现视频+AI的全面覆盖
一、背景概述 随着科技的飞速发展,智慧城市建设已成为提升社会治理能力、增强公共安全水平的重要途径。在警务领域,智慧警务作为智慧城市的重要组成部分,正通过融合视频监控技术与人工智能(AI)解决方案,实…...

批发订货系统源码怎么弄 门店订货系统小程序价格
上线批发订货系统可以显著提升业务效率和管理水平,它能够帮助企业自动化处理订单、实时跟踪库存、简化订单管理、生成数据报表…这些优势能最终帮助你降低成本、提高效率,提升业务竞争力。今天,小编为您分享批发订货系统源码怎么弄。大家点赞…...

终端安全如何防护?一文为你揭晓答案!
终端安全防护是确保组织内部网络及其连接设备免受威胁的关键措施。 以下是终端安全防护的一些核心方法: 1. 资产管理与识别 摸清家底:识别所有连接到网络的终端设备及其状态,包括硬件和软件配置。 资产分类:确定哪些资产最为关…...

价值流架构指南:构建业务创新与竞争优势的全面方法论
如何通过价值流引领企业数字化转型? 在当前数字化转型的背景下,企业面临的挑战日益复杂化:如何更快响应市场变化?如何优化资源配置提升效率?如何确保客户体验始终处于行业领先?《价值流指南》由The Open G…...

知识蒸馏(Knowledge Distillation)
Distilling the Knowledge in a Neural Network 知识蒸馏原理 1、Summarize 知识蒸馏技术 通过从大型的教师模型向小型的学生模型转移知识来实现模型压缩和优化。 知识蒸馏的核心思想是 利用教师模型在大量数据上积累的丰富知识,通过特定的蒸馏算法,使…...
【zsh】Linux离线安装zsh
首先从GitHub下载源码,然后编译源码后安装。以下是具体的步骤: 1. 下载并解压源码 首先,从GitHub下载了zsh源码的压缩包并解压到某个目录: tar -xvf zsh-<version>.tar.gz cd zsh-<version>2. 安装编译所需的依赖&…...

一款好用的电子样本册转换器
在数字化时代,电子样本册已成为各行各业必备的工具。一款好用的电子样本册转换器,可以让你在繁杂的资料管理中轻松解脱。今天,就为大家推荐一款实用的电子样本册转换神器,让你的工作效率翻倍! 工具推荐:FLB…...

TDesign:腾讯的开源企业级前端框架,能和ant-design一战吗?
TDesign 是一套拥有完整的 设计价值观 和 视觉风格指南 的企业级设计体系,同时提供了丰富的 设计资源。TDesign 在设计体系基础上产出基于 Vue、React、小程序等业界主流技术栈的组件库解决方案。是不是有点晚了? 请大家各抒己见。...

大语言模型LLM权重4bit向量量化(Vector Quantization)/查找表量化基本原理
参考 https://apple.github.io/coremltools/docs-guides/source/opt-palettization-overview.html https://apple.github.io/coremltools/docs-guides/source/opt-palettization-algos.html Apple Intelligence Foundation Language Models 苹果向量量化: DKM:…...

学习threejs,创建立方体,并执行旋转动画
文章目录 一、前言二、代码示例三、总结 一、前言 本文基于threejs,实现立方体的创建,并加入立方体旋转动画 二、代码示例 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>l…...

2024网安周今日开幕,亚信安全亮相30城
2024年国家网络安全宣传周今天在广州拉开帷幕。今年网安周继续以“网络安全为人民,网络安全靠人民”为主题。2024年国家网络安全宣传周涵盖了1场开幕式、1场高峰论坛、5个重要活动、15场分论坛/座谈会/闭门会、6个主题日活动和网络安全“六进”活动。亚信安全出席20…...
Unity Qframework 加载UI的方式
如图所示 : // Resources 加载 UIKit.OpenPanel("Resources/UIPrefab/UIMenuPanel"); // Resources 加载并传递数据 UIKit.OpenPanel<UIMenuPanel>(new UIMenuPanelData() { m_Modle this.m_Modle }, prefabName: "UIPrefab/UIMenuPanel"); …...
使用 Python 创建自动抽奖程序
介绍 自动抽奖程序在各种场景中非常有用,比如社交媒体活动、公司抽奖、在线课程奖励等。在这篇博文中,我们将学习如何使用 Python 创建一个自动抽奖程序。我们将涵盖以下内容: 需求分析环境设置基本抽奖逻辑图形用户界面(GUI&am…...

推荐10款功能强大的电脑监控软
随着工作环境和信息安全要求的不断提高,越来越多的企业和个人开始关注电脑监控软件。电脑监控软件能够帮助管理者监控员工工作效率、保护敏感信息、防止数据泄露等。下面,我们将为大家推荐10款功能强大的电脑监控软件,涵盖国内外的知名产品&a…...

‘“node“‘ �����ڲ����ⲿ���Ҳ���ǿ����еij��� ���������ļ���
错误信息 使用vscode提交前端代码到git时,报下面的错,一直不知道啥原因,后来找到了个临时解决方案。。。 vscode解决方案 package.json文件中,去掉hooks的配置。 Idea解决方案 网上有说idea的解决方案的:就是提…...

树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法
树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作,无需更改相机配置。但是,一…...
R语言AI模型部署方案:精准离线运行详解
R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

边缘计算医疗风险自查APP开发方案
核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...
FastAPI 教程:从入门到实践
FastAPI 是一个现代、快速(高性能)的 Web 框架,用于构建 API,支持 Python 3.6。它基于标准 Python 类型提示,易于学习且功能强大。以下是一个完整的 FastAPI 入门教程,涵盖从环境搭建到创建并运行一个简单的…...
【AI学习】三、AI算法中的向量
在人工智能(AI)算法中,向量(Vector)是一种将现实世界中的数据(如图像、文本、音频等)转化为计算机可处理的数值型特征表示的工具。它是连接人类认知(如语义、视觉特征)与…...
【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分
一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计,提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合:各模块职责清晰,便于独立开发…...

Maven 概述、安装、配置、仓库、私服详解
目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

【C++进阶篇】智能指针
C内存管理终极指南:智能指针从入门到源码剖析 一. 智能指针1.1 auto_ptr1.2 unique_ptr1.3 shared_ptr1.4 make_shared 二. 原理三. shared_ptr循环引用问题三. 线程安全问题四. 内存泄漏4.1 什么是内存泄漏4.2 危害4.3 避免内存泄漏 五. 最后 一. 智能指针 智能指…...

c++第七天 继承与派生2
这一篇文章主要内容是 派生类构造函数与析构函数 在派生类中重写基类成员 以及多继承 第一部分:派生类构造函数与析构函数 当创建一个派生类对象时,基类成员是如何初始化的? 1.当派生类对象创建的时候,基类成员的初始化顺序 …...

系统掌握PyTorch:图解张量、Autograd、DataLoader、nn.Module与实战模型
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文通过代码驱动的方式,系统讲解PyTorch核心概念和实战技巧,涵盖张量操作、自动微分、数据加载、模型构建和训练全流程&#…...