利用AI驱动智能BI数据可视化-深度评测Amazon Quicksight(一)
项目简介
随着生成式人工智能的兴起,传统的 BI 报表功能已经无法满足用户对于自动化和智能化的需求,今天我们将介绍亚马逊云科技平台上的AI驱动数据可视化神器 – Quicksight,利用生成式AI的能力来加速业务决策,从而提高业务生产力。借助Quicksight中集成的Amazon Q的创作功能,业务分析师可以使用自然语言提示在几秒钟内构建、发现和分享数据洞察。同时通过Amazon Q创建对分析数据文本总结摘要、基于数据问答的知识库和PPT/Word格式的数据报告,让用户和开发者更容易理解数据,加快整个数据分析、可视化过程中的效率。
在本系列的第一篇中,我们会搭建和配置Amazon Quicksight数据可视化工具,并利用该工具创建一个数据分析图表。欢迎大家持续关注本系列,了解更多国际前沿的云计算生成式AI和数据分析的解决方案。
所需基础知识
什么是Amazon Quicksight BI可视化工具?
Amazon QuickSight 是一款由亚马逊云科技提供的全托管商业智能(BI)服务,专为云端设计。它允许开发者快速创建互动式仪表板、报告和数据可视化,帮助他们从数据中获得洞察。QuickSight 能够无缝连接各种数据源,包括 AWS 服务(如 Amazon RDS、Amazon S3、Amazon Redshift)以及第三方工具和本地数据库。它还提供了机器学习的高级分析功能,使用户能够执行异常检测、预测等任务,而无需具备数据科学背景。
通过 QuickSight Q 功能,用户可以使用自然语言进行查询,系统会自动生成可视化数据结果,使非技术用户也能轻松获取洞察。此外,QuickSight 还支持嵌入式分析,灵活地将 BI 能力集成到应用程序中。
Quicksight的优势是什么?
首先我们看看Quicksight服务的优势,Quicksight总结下来一共有7大特点。
连接企业内部的所有数据源:
Quicksight可以连接到亚马逊云科技、第三方云厂商和本地数据,做到真正互联互通
构建自定义构建数据面板:
提供了多种视图设置选项,支持用户配置细颗粒度、自定义的数据面板,增强和用户的交互。
利用机器学习获取数据洞察:
Quicksight利用机器学习支持了对数据的异常分析、时间序列预测以及基于数据的关键信息洞察。
利用生成式AI的能力让BI更强大:
Quicksight已与Amazon Q集成,通过Amazon Q帮助大家通过自然语言生成报表、提取数据的洞察信息,以及根据数据生成可展示的PPT。
支持与多种亚马逊云科技服务原生集成:
支持多种亚马逊云科技原生服务作为数据源,如Redshift、Athena、S3、RDS等。
安全性与合规性:
满足MLPS 3 级评估、TRUCS 认证、ISO 系列认证等合规认证。支持利用CloudTrail 生成审计日志、利用IAM对数据细颗粒度、基于角色的权限管理(RBAC)、支持与VPC集成建立私有网络连接保护用户数据。
节约成本、自动扩展:
Quicksight采用无服务器托管模式,可以自动扩展到满足数十万用户查询。并且按照读者访问数据面板的会话数量计费,极大降低了License采购费用。
本实践包括的内容
1. 启用并设置Amazon Quicksight BI工具
2. 利用Amazon Quicksight制作一个数据分析仪表盘
项目实操步骤
在本项目实验中,我们会利用Amazon Quicksight分析一家软件公司的销售数据
启用并设置Amazon Quicksight BI工具
1. 首先我们在亚马逊云科技控制台进入Quicksight服务
2. 在QuickSight页面,单击”注册QuickSight“按钮,打开QuickSight注册页面
3.输入一个邮箱,作为接收账户通知的电子邮件。并填写一个Quicksight账户名称。
4.其他均选择默认,将鼠标滚动到页面的底部,将添加像素级完美报告的复选框去掉,最后点击完成创建Quicksight服务。
5. 等待创建成功后,点击Go to Amazon QuickSight按钮,进入QuickSight 控制台。
利用Amazon Quicksight制作数据分析仪表盘
5. 从QuickSight控制台的左侧菜单栏中,选择数据集(Datasets)。
6.在界面右上方,点击New dataset按钮添加数据集。
7. 选择第选项 "Upload a file",从本地上传源数据csv文件进行分析。
8. 点击Next开始导入数据
9. 点击Visualize将数据在面板中可视化
10. 我们首先选中选中”Interactive sheet“(可交互式视图),然后单击CREATE按钮创建视图。
11.大家会进入到如下图界面,界面中标记了不同位置的按键功能
12. 单击界面中左上角的的default name进入编辑模式,为该视图重命名为”SaaS-Sales analysis - Build your first dashboard“。
13. 接下来我们在视图界面中选择”基于数据自动生成“类型(红框),并在左侧数据栏中添加数据”Sales“和”Order Date“
14. 同时我们点击数据配置栏中的X-ais下的”Order Date“,选择Aggregate类型为Month,将数据按每月展示
15. 我们最后再将视图类型切换到"Line Chart"折线图,就可以得到下图中的销售额变化图表了
以上就是深度体验亚马逊云科技的AI驱动的BI数据可视化工具 - Quicksight上篇内容。欢迎大家关注小李哥和我的亚马逊云科技AI服务深入调研系列,不要错过未来更多国际前沿的AWS云开发/云架构方案。
相关文章:

利用AI驱动智能BI数据可视化-深度评测Amazon Quicksight(一)
项目简介 随着生成式人工智能的兴起,传统的 BI 报表功能已经无法满足用户对于自动化和智能化的需求,今天我们将介绍亚马逊云科技平台上的AI驱动数据可视化神器 – Quicksight,利用生成式AI的能力来加速业务决策,从而提高业务生产…...

Linux常见指令、ls、pwd、cd、touch、mkdir、rmdir、rm等的介绍
文章目录 前言一、ls二、pwd三、cd四、touch五、 mkdir六、rmdir七、rm总结 前言 Linux常见指令、ls、pwd、cd、touch、mkdir、rmdir、rm等的介绍 一、ls 列出该目录下的所有子目录与文件。对于文件,将列出文件名以及其他信息 -a 列出目录下的所有文件,…...
【Kubernetes】常见面试题汇总(八)
目录 22.简述 Kubernetes 中 Pod 的健康检查方式? 23.简述 Kubernetes Pod 的 LivenessProbe 探针的常见方式? 24.简述 Kubernetes Pod 的常见调度方式? 22.简述 Kubernetes 中 Pod 的健康检查方式? 对 Pod 的健康检查可以通过…...
CentOS 7系统双网卡配置动态链路聚合(bond4)
一、应用场景 在机房建设时,服务器的网卡需要配置成bond4,可以使用我下面的配置文件和脚本来进行配置,简化配置流程。 bond4,即动态链路聚合,它可以将服务器上的两个物理网卡聚合为一个,两个网口逻辑成一…...

ubuntu 20.04 一直卡在登录界面,即使密码正确也无法登录(失败记录)
ubuntu 20.04 一直卡在登录界面,即使密码正确也无法登录 这次是装实体机,一次失败的尝试。。。 名称型号CPUIntel Xeon E5-2673 V3GPURTX 3060 mobile 安装的时候不要选install third-party software for graphics and Wi-fi hardware and additional …...

【深度学习】神经网络-怎么理解DNN、CNN、RNN?
怎么分清DNN、RNN、CNN? 最“大”的概念是人工神经网络(Artificial Neural Network, ANN),它是较为广泛的术语,通常指的是一类模拟生物神经网络的数学模型,其中包括神经元、权重和连接。在这个术语下&#…...
组织应在其网络安全策略中考虑MLSecOps吗?
随着越来越多的组织拥抱人工智能 (AI) 和机器学习 (ML) 来优化操作并获得竞争优势,关于如何最好地保障这一强大技术的安全性的问题也日益受到关注。其中的核心是用于训练ML模型的数据,这对模型的行为和性能有着根本影响。因此,组织需要密切关…...

Windows安装HeidiSQL教程(图文)
一、软件简介 HeidiSQL是一款开源的数据库管理工具,主要用于管理MySQL、MariaDB、SQL Server、PostgreSQL和SQLite等数据库系统。它提供了直观的用户界面,使用户可以轻松地连接到数据库服务器、执行SQL查询、浏览和编辑数据、管理数据库结构等操作。 跨…...

存储课程学习笔记5_iouring的练习(io_uring,rust_echo_bench,fio)
我们知道,在处理大量高并发网络时,一般考虑并发,以及设计对应的方案(比如select,poll,epoll)等。 那么如果频繁进行文件或者磁盘的操作,如何考虑性能和并发,这里就可以考虑用到io_uring。 0&a…...
前端HTML+CSS+JS的入门学习
一.HTML HTML(HyperText Markup Language)即超文本标记语言,是用于创建网页和网页应用程序的标准标记语言。它不是一种编程语言,而是一种标记语言,通过一系列的元素(elements)来告诉浏览器如何…...
通信电路和信道的区别与联系
通信电路和信道的区别 区分通信电路和信道主要在于理解它们的功能范围与作用机制。通信电路侧重于信息的处理和信号的调整,而信道更侧重于信号的实际传输。电路可以视为信道的接入点,但它们的设计和优化考量各不相同。例如,电路设计重视的传…...
基于深度学习的蛋白质结构预测
基于深度学习的蛋白质结构预测是利用深度学习模型来预测蛋白质的三维结构,这在生物学和药物研发领域具有重要意义。蛋白质的功能在很大程度上取决于其三维结构,准确预测蛋白质结构可以帮助科学家理解蛋白质的功能和相互作用,并加速药物发现的…...
基于 Redis 的分布式锁实现原理及步骤
实现分布式锁的目的是在分布式系统中,保证多个节点之间对共享资源的并发访问是互斥的。常用的分布式锁实现方式有以下几种:基于数据库、基于 Redis、基于 Zookeeper。下面详细介绍基于 Redis 的分布式锁实现原理及步骤。 一、Redis 分布式锁原理 唯一性…...
21_动态规划与数据结构结合
菜鸟:老鸟,我最近在处理一个数据操作时遇到了性能问题。我需要计算一个数组中某些子数组的和,但直接计算太慢了,有没有什么更高效的方法? 老鸟:你提到的这个问题其实可以通过动态规划结合数据结构来解决。…...
React与Vue的对比
异同总结 相同点: 都有组件化思想 都支持服务器端渲染 都有Virtual DOM(虚拟dom) 数据驱动视图 都有支持native的方案:Vue的weex、React的React native 都有自己的构建工具:Vue的vue-cli、React的Create React A…...

精密量测软件(仿KLA免费浏览器程序ProfilmOnline)
KLA在线软件分析图 软件仿KLA公司免费浏览器软件ProfilmOnline,软件地址ProfilmOnline - 用于3D轮廓仪和AFM的表面成像、分析和测量软件 可以直接从profilmonline上下载3D图加载对比分析,当前已完成的内容有 1、调平 2、尖峰去噪 3、能量密度图&…...

Java项目: 基于SpringBoot+mybatis+maven实现的IT技术交流和分享平台(含源码+数据库+毕业论文)
一、项目简介 本项目是一套基于SpringBootmybatismaven实现的IT技术交流和分享平台 包含:项目源码、数据库脚本等,该项目附带全部源码可作为毕设使用。 项目都经过严格调试,eclipse或者idea 确保可以运行! 该系统功能完善、界面美…...
STL02——手写简单版本的list
手写一个简单版本的list 设计一个名为 List 的 List 类,该类具有以下功能和特性: 1、基础成员函数 构造函数:初始化 List 实例析构函数:清理资源,确保无内存泄露 2、核心功能 在 List 末尾添加元素在 List 开头添…...

基于SpringBoot的校园自助洗衣服务管理系统
作者:计算机学姐 开发技术:SpringBoot、SSM、Vue、MySQL、JSP、ElementUI等,“文末源码”。 专栏推荐:前后端分离项目源码、SpringBoot项目源码、SSM项目源码 系统展示 【2025最新】基于JavaSpringBootVueMySQL的校园自助洗衣服务…...

音视频入门基础:AAC专题(2)——使用FFmpeg命令生成AAC裸流文件
在文章《音视频入门基础:PCM专题(1)——使用FFmpeg命令生成PCM音频文件并播放》中讲述了生成PCM文件的方法。通过FFmpeg命令可以把该PCM文件转为AAC裸流文件: ./ffmpeg -f s16le -ar 44100 -ac 2 -i audio1.pcm audio1.aac 由于…...
React 第五十五节 Router 中 useAsyncError的使用详解
前言 useAsyncError 是 React Router v6.4 引入的一个钩子,用于处理异步操作(如数据加载)中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误:捕获在 loader 或 action 中发生的异步错误替…...

C++初阶-list的底层
目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...

微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】
微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来,Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...

基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容
基于 UniApp + WebSocket实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...
spring:实例工厂方法获取bean
spring处理使用静态工厂方法获取bean实例,也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下: 定义实例工厂类(Java代码),定义实例工厂(xml),定义调用实例工厂ÿ…...
Java 加密常用的各种算法及其选择
在数字化时代,数据安全至关重要,Java 作为广泛应用的编程语言,提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景,有助于开发者在不同的业务需求中做出正确的选择。 一、对称加密算法…...
VTK如何让部分单位不可见
最近遇到一个需求,需要让一个vtkDataSet中的部分单元不可见,查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行,是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示,主要是最后一个参数,透明度…...
鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/
使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题:docker pull 失败 网络不同,需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...
C++.OpenGL (14/64)多光源(Multiple Lights)
多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...

uniapp手机号一键登录保姆级教程(包含前端和后端)
目录 前置条件创建uniapp项目并关联uniClound云空间开启一键登录模块并开通一键登录服务编写云函数并上传部署获取手机号流程(第一种) 前端直接调用云函数获取手机号(第三种)后台调用云函数获取手机号 错误码常见问题 前置条件 手机安装有sim卡手机开启…...