当前位置: 首页 > news >正文

Tranformer分布式特辑

随着大模型的发展,如何进行分布式训练也成了每位开发者必备的技能。

1. 单机训练

  • CPU Offloading
  • Gradient Checkpointing
    • 正向传播时,不存储当前节点的中间结果,在反向传播时重新计算,从而起到降低显存占用的作用
  • Low Precision Data Types
  • Memory Efficient Optimizers

2. 分布式

数据并行(DP)和模型并行(MP)

分布式通信基础:

  • Broadcast: 把一个节点自身的数据广播到其他节点上
  • Scatter:数据进行切片再分发给集群内所有的节点
  • Gather: 把多个节点的数据收集到一个节点上
  • AllGather:多个节点的数据收集到一个主节点上(Gather),再把收集到的数据分发到其他节点上(broadcast)
  • Reduce:把多个节点的数据规约运算到一个主节点上
  • ReduceScatter:所有节点上都按维度执行相同的Reduce规约运算,再将结果发散到集群所有节点上
  • AllReduce: 多个节点的数据规约运算(Reducer),再把结果分发到其他节点上(broadcast)
    在这里插入图片描述

类型基础:
在这里插入图片描述

在这里插入图片描述

3. FullyShardedDataParallel (FSDP)

  • https://huggingface.co/docs/transformers/main/en/fsdp

4. ZeRO

zero的一些分布式设置

5. Deepspeed

在这里插入图片描述

a. Stage 1 : Shards optimizer states across data parallel workers/GPUs. 优化器状态切分 (ZeRO stage 1)

b. Stage 2 : Shards optimizer states + gradients across data parallel workers/GPUs. +梯度切分 (ZeRO stage 2)

c. Stage 3: Shards optimizer states + gradients + model parameters across data parallel workers/GPUs. + 参数切分 (ZeRO stage 3)

d. Optimizer Offload: Offloads the gradients + optimizer states to CPU/Disk building on top of ZERO Stage 2

e. Param Offload: Offloads the model parameters to CPU/Disk building on top of ZERO Stage 3
请添加图片描述
其中多数情况下,
速度对比:ZeRO-0> ZeRO-1> ZeRO-2> ZeRO-2+offload> ZeRO-3> ZeRO-3+offloads
显存对比:ZeRO-0 <ZeRO-1< ZeRO-2< ZeRO-2+offload< ZeRO-3< ZeRO-3+offloads

因此,选择时,从FSDP开始,如果显存不足,则依次尝试ZeRO-2,ZeRO-2+offload,ZeRO-3,ZeRO-3+offload_optimizer, ZeRO-3+offload_optimizer+offload_param. 其中offload_optimizer: 是为减少GPU显存,将优化器状态加载到CPU。ZeRO-2仅用于训练,推理时不需要优化器和梯度。ZeRO-3也可用于推断,模型分布加载到多个GPU。

  • ZeRO-0:禁用所有分片,此时将DeepSpeed视为DDP使用 (stage默认值:0)
"zero_optimization": {"stage": 0}
  • ZeRO-1:ZeRO第一阶段的优化,将优化器状态进行切分。
"zero_optimization": {"stage": 1}
  • ZeRO2
"zero_optimization": {"stage": 2,"allgather_partitions": true,"allgather_bucket_size": 3e8,"overlap_comm": true,"reduce_scatter": true,"reduce_bucket_size": 3e8,"contiguous_gradients": true}
  • ZeRO3
"zero_optimization": {"stage": 3,"offload_optimizer": {"device": "cpu","pin_memory": true},"offload_param": {"device": "cpu","pin_memory": true},"overlap_comm": true,"contiguous_gradients": true,"sub_group_size": 1e9,"reduce_bucket_size": 1e6,"stage3_prefetch_bucket_size": 4e6,"stage3_param_persistence_threshold": 1e4,"stage3_max_live_parameters": 1e9,"stage3_max_reuse_distance": 1e9,"stage3_gather_16bit_weights_on_model_save": true},

6. Megatron

  • https://huggingface.co/docs/transformers/main/en/perf_train_gpu_many
  • 下图来自bloom
    请添加图片描述

7. Megatron-deepspeed

  • https://github.com/bigscience-workshop/Megatron-DeepSpeed

Reference

  • https://pytorch.org/docs/stable/distributed.html
  • accelerate
  • https://www.deepspeed.ai/getting-started/
  • https://wandb.ai/byyoung3/ml-news/reports/A-Guide-to-DeepSpeed-Zero-With-the-HuggingFace-Trainer–Vmlldzo2ODkwMDc4
  • https://github.com/huggingface/blog/blob/main/accelerate-deepspeed.md
  • DeepSpeed之ZeRO系列:将显存优化进行到底 - basicv8vc的文章 - 知乎
  • 从啥也不会到DeepSpeed————一篇大模型分布式训练的学习过程总结 - elihe的文章 - 知乎
  • DDP系列第二篇:实现原理与源代码解析 - 996黄金一代的文章 - 知乎
  • 关于Deepspeed的一些总结与心得 - 白板笔的文章 - 知乎
  • deepspeed入门教程 - JOYWIN的文章 - 知乎
  • deepspeed多机多卡训练踏过的坑 - 100110的文章 - 知乎
  • https://www.zhangzhenhu.com/deepspeed/index.html
  • https://github.com/hpcaitech/ColossalAI
  • 模型并行训练:为什么要用Megatron,DeepSpeed不够用吗? - 流逝的文章 - 知乎
  • 如何判断候选人有没有千卡GPU集群的训练经验? - 你的真实姓名的回答 - 知乎
  • https://www.determined.ai/blog/tp
  • https://imbue.com/research/70b-infrastructure/

相关文章:

Tranformer分布式特辑

随着大模型的发展&#xff0c;如何进行分布式训练也成了每位开发者必备的技能。 1. 单机训练 CPU OffloadingGradient Checkpointing 正向传播时&#xff0c;不存储当前节点的中间结果&#xff0c;在反向传播时重新计算&#xff0c;从而起到降低显存占用的作用 Low Precision…...

【Moveit2官方教程】使用 MoveIt Task Constructor (MTC) 框架来定义和执行一个机器人任务

#include <rclcpp/rclcpp.hpp> // ROS 2 的核心库 #include <moveit/planning_scene/planning_scene.h> // MoveIt 规划场景相关的头文件 #include <moveit/planning_scene_interface/planning_scene_interface.h> // MoveIt 规划场景接口 #include <m…...

使用docker配置wordpress

docker的安装 配置docker yum源 sudo yum install -y yum-utils sudo yum-config-manager \ --add-repo \ http://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo下载最新版本docker sudo yum install -y docker-ce docker-ce-cli containerd.io docker-buildx-…...

JVM字节码

JVM字节码详解 引言 JVM&#xff08;Java Virtual Machine&#xff0c;Java虚拟机&#xff09;字节码是一种中间代码&#xff0c;主要用于Java平台上的程序在不同硬件平台上的移植。Java程序通过编译器将源代码编译成字节码&#xff0c;然后通过JVM解释或即时编译&#xff08…...

python访问mysql

要在 Python 中访问 MySQL 数据库&#xff0c;通常会使用 mysql-connector-python 或 pymysql 这两个库之一。以下是使用这两个库的基本示例&#xff1a; 使用 mysql-connector-python 安装库: pip install mysql-connector-python示例代码: import mysql.connector# 连接到 M…...

Java工具插件

一、springboot集成mqtt订阅 阿里云MQTT使用教程_复杂的世界311的博客-CSDN博客_阿里云mqtt 阿里云创建MQTT服务 先找到产品与服务,然后选择物联网平台,找到公共实例,创建一个产品。 创建产品 然后在左侧下拉栏找到设备管理,在设备管理下拉栏找到设备,然后添加设备。添加…...

Class3——Esp32|Thonny——网络连接主机-wifi连接(源代码带教程)

废话不多说——直接上配置源码和图片 一.电脑连接到wifi上&#xff08;不能是5G&#xff09; 二.网络调试助手信息设置绑定 1.获取电脑wifi信息 2.设置网络调试助手为一致&#xff0c;然后打开&#xff0c;主机地址是上面的192.168.2.149端口自己设置&#xff0c;UDP然后打开…...

特效【生日视频制作】小车汽车黄金色版悍马车身AE模板修改文字软件生成器教程特效素材【AE模板】

生日视频制作教程小车汽车黄金色版悍马车身AE模板修改文字特效广告生成神器素材祝福玩法AE模板工程 怎么如何做的【生日视频制作】小车汽车黄金色版悍马车身AE模板修改文字软件生成器教程特效素材【AE模板】 生日视频制作步骤&#xff1a; 下载AE模板 安装AE软件 把AE模板导入…...

如何利用Java进行快速的足球大小球及亚盘数据处理与分析

在当今信息爆炸的时代&#xff0c;大量的数据产生和积累&#xff0c;对于企业和个人来说&#xff0c;如何高效地处理和分析这些数据成为了一项重要的任务。Java作为一门强大的编程语言&#xff0c;提供了丰富的工具和库&#xff0c;可以帮助我们快速进行数据处理与分析。下面将…...

代码随想录打卡Day29

今天的题目尊嘟好难…除了第三题没看视频&#xff0c;其他的题目都是看了视频才做出来的。二刷等我。 134. 加油站 感觉这道题和之前的53. 最大子序和有点像&#xff0c;最大子序和是一旦当前总和为负数则立即抛弃当前的总和&#xff0c;从下个位置重新开始计算&#xff0c;而…...

图分类!!!

deepwalk 使用图中节点与节点的共现关系来学习节点的向量表示。那么关键的问题就是如何来描述节点与节点的共现关系&#xff0c;DeepWalk给出的方法是使用随机游走(RandomWalk)的方式在图中进行节点采样,RandomWalk是一种可重复访问已访问节点的深度优先遍历算法。给定当前访问…...

高防IP是如何防御攻击

DDoS攻击作为网络攻击中最常见的一种&#xff0c;一般利用大量的虚假流量向目标服务器发起攻击&#xff0c;进而堵塞网络损耗服务器性能&#xff0c;使服务器呈现崩溃状态&#xff0c;令真正的用户无法正常访问发送请求。以前的大型企业通常都是使用高防服务器来抵抗这类攻击&a…...

Kubernetes 系列 | k8s入门运维

目录 一、K8S集群搭建1.1 部署方式1.2 了解kubeadm1.3 部署流程1.3.1 初始化配置1.3.2 安装容器运行时1.3.3 安装K8S软件包1.3.4 创建集群 二、集群高可用1.1 集群高可用-堆叠1.2 集群高可用-集群外etcd 三、Pod运维3.1 Pod运维3.2 Pod的生命周期3.3 Pod状况3.4 Pod阶段3.5 容器…...

yolov8+deepsort+botsort+bytetrack车辆检测和测速系统

结合YOLOv8、DeepSORT、BoTSORT和ByteTrack等技术&#xff0c;可以实现一个高效的车辆检测和测速系统。这样的系统适用于交通监控、智能交通管理系统&#xff08;ITS&#xff09;等领域&#xff0c;能够实时识别并跟踪车辆&#xff0c;并估算其速度。 项目介绍 本项目旨在开发…...

基于准静态自适应环型缓存器(QSARC)的taskBus万兆吞吐实现

文章目录 概要整体架构流程技术名词解释技术细节1. 数据结构2. 自适应计算队列大小3. 生产者拼接缓存4. 高效地通知消费者 小结1. 性能表现情况2. 主要改进和局限3. 源码和发行版 概要 准静态自适应环形缓存器&#xff08;Quasi-Static Adaptive Ring Cache&#xff09;是task…...

C++笔记---指针常量和常量指针

巧记方法&#xff08;方法来自于网络出处忘记了&#xff09;&#xff1a;const读作常量&#xff0c;*读作指针&#xff0c;按顺序读即可。例如&#xff1a; const int * ptr; //const在前*在后读作常量指针 const * int ptr; //const在前*在后读作常量指针 int * const prt; /…...

Python习题 177:设计银行账户类并实现存取款功能

(编码题)Python 实现一个简单的银行账户类 BankAccount,包含初始化方法、存款、取款、获取余额等功能。 参考答案 分析需求如下。 Python 类 BankAccount,用于模拟银行账户的基本功能。该类应包含以下方法: 初始化方法: 接受两个参数:account_holder(账户持有人的姓…...

IPhone 16:它的 “苹果智能 “包括哪些内容?

IPhone 16 的发布让科技界看到了该公司的人工智能产品 “苹果智能”&#xff08;Apple Intelligence&#xff09;究竟能做些什么。 苹果公司发布了拥有人工智能硬件升级的最新款 iPhone 16&#xff0c;进一步进军人工智能领域。苹果公司首席执行官蒂姆-库克&#xff08;Tim Coo…...

【中国国际航空-注册/登录安全分析报告】

前言 由于网站注册入口容易被黑客攻击&#xff0c;存在如下安全问题&#xff1a; 1. 暴力破解密码&#xff0c;造成用户信息泄露 2. 短信盗刷的安全问题&#xff0c;影响业务及导致用户投诉 3. 带来经济损失&#xff0c;尤其是后付费客户&#xff0c;风险巨大&#xff0c;造…...

【ArcGIS】栅格计算器原理及案例介绍

ArcGIS&#xff1a;栅格计算器原理及案例介绍 栅格计算器&#xff08;Raster Calculator&#xff09;原理介绍案例案例1&#xff1a;计算栅格数据平均值 参考 栅格计算器&#xff08;Raster Calculator&#xff09;原理介绍 描述&#xff1a;在类似计算器的界面中&#xff0c;…...

变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析

一、变量声明设计&#xff1a;let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性&#xff0c;这种设计体现了语言的核心哲学。以下是深度解析&#xff1a; 1.1 设计理念剖析 安全优先原则&#xff1a;默认不可变强制开发者明确声明意图 let x 5; …...

日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻

在如今就业市场竞争日益激烈的背景下&#xff0c;越来越多的求职者将目光投向了日本及中日双语岗位。但是&#xff0c;一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧&#xff1f;面对生疏的日语交流环境&#xff0c;即便提前恶补了…...

【OSG学习笔记】Day 18: 碰撞检测与物理交互

物理引擎&#xff08;Physics Engine&#xff09; 物理引擎 是一种通过计算机模拟物理规律&#xff08;如力学、碰撞、重力、流体动力学等&#xff09;的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互&#xff0c;广泛应用于 游戏开发、动画制作、虚…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

Qt Widget类解析与代码注释

#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码&#xff0c;写上注释 当然可以&#xff01;这段代码是 Qt …...

【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例

文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...

ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放

简介 前面两期文章我们介绍了I2S的读取和写入&#xff0c;一个是通过INMP441麦克风模块采集音频&#xff0c;一个是通过PCM5102A模块播放音频&#xff0c;那如果我们将两者结合起来&#xff0c;将麦克风采集到的音频通过PCM5102A播放&#xff0c;是不是就可以做一个扩音器了呢…...

2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面

代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口&#xff08;适配服务端返回 Token&#xff09; export const login async (code, avatar) > {const res await http…...

【JavaSE】绘图与事件入门学习笔记

-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角&#xff0c;以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向&#xff0c;距离坐标原点x个像素;第二个是y坐标&#xff0c;表示当前位置为垂直方向&#xff0c;距离坐标原点y个像素。 坐标体系-像素 …...

IT供电系统绝缘监测及故障定位解决方案

随着新能源的快速发展&#xff0c;光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域&#xff0c;IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选&#xff0c;但在长期运行中&#xff0c;例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...