当前位置: 首页 > news >正文

跟李沐学AI:长短期记忆网络LSTM

输入们、遗忘门和输出门

LSTM引入输入门、忘记门和输出门

输入门计算公式为:\sigma(X_tW_{xi}+H_{t-1}W_{h1}+b_i)

遗忘门计算公式为:\sigma(X_tW_{xf}+H_{t-1}W_{hf}+b_f)

输出门计算公式为:\sigma(X_tW_{xo}+H_{t-1}W_{ho}+b_o)

 它们由三个具有sigmoid激活函数的全连接层处理, 以计算输入门、遗忘门和输出门的值。 因此,这三个门的值都在(0,1)的范围内。

候选记忆元

类似RNN中的H_t,计算公式为:\widetilde{C_t}=tanh(X_tW_{xc}+H_{t-1}W_{hc}+b_c)

记忆元

LSTM中,输入门和遗忘门类似GRU中控制输入或遗忘的机制。输入们用于控制采用多少来自\widetilde{C_t}的新数据,遗忘门用于控制保留多少过去的记忆元C_{t-1}的内容。随后按元素乘法,得出C_t=F_t\odot C_{t-1} + T_t\odot \widetilde{C_t}

如果遗忘门始终为1且输入门始终为0, 则过去的记忆元Ct−1 将随时间被保存并传递到当前时间步。 引入这种设计是为了缓解梯度消失问题, 并更好地捕获序列中的长距离依赖关系。

隐状态 

LSTM中,输出门用于计算隐状态:H_t=O_t \odot tanh(C_t)。只要输出门接近1,我们就能够有效地将所有记忆信息传递给预测部分, 而对于输出门接近0,我们只保留记忆元内的所有信息,而不需要更新隐状态。

相关文章:

跟李沐学AI:长短期记忆网络LSTM

输入们、遗忘门和输出门 LSTM引入输入门、忘记门和输出门 输入门计算公式为:。 遗忘门计算公式为:。 输出门计算公式为:。 它们由三个具有sigmoid激活函数的全连接层处理, 以计算输入门、遗忘门和输出门的值。 因此&#xff0c…...

【BIM模型数据】BIM模型的数据如何存储,BIM大模型数据云端存储,需要考虑哪些因素,BIM模型数据存储和获取

【BIM模型数据】BIM模型的数据如何存储,BIM大模型数据云端存储,需要考虑哪些因素,BIM模型数据存储和获取 BIM文件的结构化数据和非结构化数据的存储方式,需要根据数据的特性和使用需求来选择。以下是一些推荐的存储策略&#xff1…...

【LLM大模型】大模型架构:layer\_normalization

2.layer_normalization 1.Normalization 1.1 Batch Norm 为什么要进行BN呢? 在深度神经网络训练的过程中,通常以输入网络的每一个mini-batch进行训练,这样每个batch具有不同的分布,使模型训练起来特别困难。Internal Covariat…...

PON光模块的独特类型和特性

在当前互联网需求快速增长的背景下,PON光模块已成为实现光纤网络高速数据传输的重要组成部分。从住宅宽带到各种企业应用程序解决方案,PON光模块始终致力于实现高质量的数据传输与无缝通信。了解PON光模块的类型和特性对于深入理解现代网络基础设施至关重…...

架构与业务的一致性应用:实现企业战略目标和合规管理的全面指南

在当今快速变化的数字经济中,信息架构已成为企业实现其业务目标、优化运营效率和确保数据安全的关键工具。 一个成功的信息架构不仅要与企业的战略目标紧密对齐,还必须遵循日益严格的合规性要求,以保护敏感数据并满足法规规定。《信息架构&a…...

时尚穿搭想换就换,各种风格一键完美搭配!亲测在线虚拟试衣换装平台效果超赞!

随着科技的发展,时尚领域也迎来了新的革命。传统的试衣方式逐渐被现代科技所取代,虚拟试衣间的出现使得用户可以在舒适的家中轻松体验不同的服装风格。 先前给大家也介绍过一些虚拟试衣的技术,例如AnyFit或者OutfitAnyone等,今天…...

【C++】C++ 标准库string类介绍(超详细解析,小白必看系列)

C 标准库中的 std::string 类是一个非常强大的工具&#xff0c;用于处理和操作字符串。它属于 <string> 头文件&#xff0c;并提供了一套丰富的功能和方法。以下是 std::string 类的一些主要特性和常用操作&#xff1a; 1 string简介 字符串是表示字符序列的类 标准的字…...

若依RuoYi项目环境搭建教程(RuoYi-Vue + RuoYi-Vue3版本)

文章目录 一、开发脚手架选择二、RuoYi框架1、介绍2、版本发展3、为什么选择若依4、优缺点5、项目内置功能 三、后端项目部署1、拉取源码2、环境要求3、Maven构建4、MySQL相关&#xff08;1&#xff09;导入SQL脚本&#xff08;2&#xff09;配置信息 5、Redis相关&#xff08;…...

Java 后端接口入参 - 联合前端VUE 使用AES完成入参出参加密解密

加密效果&#xff1a; 解密后的数据就是正常数据&#xff1a; 后端&#xff1a;使用的是spring-cloud框架&#xff0c;在gateway模块进行操作 <dependency><groupId>com.google.guava</groupId><artifactId>guava</artifactId><version>30…...

HarmonyOS开发之使用PhotoViewPicker(图库选择器)保存图片

一&#xff1a;效果图 二&#xff1a;添加依赖 import fs from ohos.file.fs;//文件管理 import picker from ohos.file.picker//选择器 三&#xff1a;下载&#xff0c;保存图片的实现 // 下载图片imgUrldownloadAndSaveImage(imgUrl: string) {http.createHttp().request(…...

跨境独立站支付收款常见问题排雷篇1.0丨出海笔记

最近小伙伴们在社群讨论挺多关于独立站支付问题的&#xff0c;鉴于不少朋友刚接触独立站&#xff0c;我整理了一些独立站支付相关的问题和解决方案&#xff0c;供大家参考&#xff0c;百度网上一堆媒体的那些软文大家就别看了&#xff0c;都是软广或者抄来抄去&#xff0c;让大…...

uni-app实现web-view和App之间的相互通信

双向实时 如果app端部署成网站&#xff0c;则web-view就是iframe&#xff0c;使用也可以双向通讯 https://uniapp.dcloud.net.cn/component/web-view.html APP端代码 index.vue: <template><web-viewid"m-webview":fullscreen"true":src"…...

HTB-Vaccine(suid提权、sqlmap、john2zip)

前言 各位师傅大家好&#xff0c;我是qmx_07&#xff0c;今天来为大家讲解Vaccine靶机 渗透过程 信息搜集 服务器开放了 21FTP服务、22SSH服务、80HTTP服务 通过匿名登录FTP服务器 通过匿名登录到服务器&#xff0c;发现backup.zip文件&#xff0c;可能存在账号密码 发现b…...

【达梦数据库】异构数据库迁移到达梦

目录 1、迁移准备2、正式迁移3、问题处理3.1、return附近出现错误3.1.1、排查过程3.1.2、问题原因3.1.2、解决方法 3.2、对象[XXX]处于无效状态-类型13.2.1、排查过程3.2.2、问题原因3.2.3、解决方法 3.3、对象[XXX]处于无效状态-类型23.3.1、排查过程3.3.2、问题原因3.3.3、解…...

抽象类和接口(1)

抽象类&#xff1a; 什么是抽象类&#xff1a; 听着就很抽象&#xff0c;确实挺抽象&#xff0c;先来写一个抽象类感觉一下&#xff1a; 这就是抽象类&#xff01; 在 Java 中&#xff0c;一个类如果被 abstract 修饰称为抽象类&#xff0c;抽象类中被 abstract 修饰的方法…...

epoll内核原理与实现详解

目录 1 epoll相关理论基础 1.1 I/O多路复用技术 1.2 事件驱动模型 1.2.1 基本概念 1.2.2 优缺点分析 1.2.3 与epoll的关联 1.3 epoll机制简介 1.3.1 核心原理 1.3.2 优点 2 epoll内核原理 2.1 epoll数据结构 2.1.1 主要数据结构 2.1.2 数据结构关系 2.2 epoll工作…...

被低估的SQL

SQL是现代数据库管理系统中不可或缺的一部分。尽管它的使用已十分普遍&#xff0c;但在数据处理领域&#xff0c;SQL的某些功能和潜力仍然被许多人低估。接下来&#xff0c;小编将与您一起&#xff0c;探讨SQL的一些被忽视的特性&#xff0c;揭示它在数据管理中的真正实力。 1.…...

数字证书、数字签名及其关系

一.数字证书与数字签名 1.数字证书是一个经证书授权中心数字签名的包含公开密钥拥有者信息以及公开密钥的文件。简单地说&#xff0c;数字证书是一段包含用户身份信息、用户公钥信息以及份验证机构数字签名的数据。 通俗理解&#xff1a;数字证书相当于【身份证】 —— 确认你…...

一文读懂:如何将广告融入大型语言模型(LLM)输出

本文是我翻译过来的&#xff0c;讨论了在线广告行业的现状以及如何将大型语言模型&#xff08;LLM&#xff09;应用于在线广告。 原文请参见”阅读原文“。 在2024年&#xff0c;预计全球媒体广告支出的69%将流向数字广告市场。这个数字预计到2029年将增长到79%。在Meta的2024…...

godotenv拜读

简介 应用提倡将配置存储在环境变量中。任何从开发环境切换到生产环境时需要修改的东西都从代码抽取到环境变量里。 但是在实际开发中&#xff0c;如果同一台机器运行多个项目&#xff0c;设置环境变量容易冲突&#xff0c;不实用。godotenv库从.env文件中读取配置&#xff0c;…...

Golang dig框架与GraphQL的完美结合

将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用&#xff0c;可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器&#xff0c;能够帮助开发者更好地管理复杂的依赖关系&#xff0c;而 GraphQL 则是一种用于 API 的查询语言&#xff0c;能够提…...

tree 树组件大数据卡顿问题优化

问题背景 项目中有用到树组件用来做文件目录&#xff0c;但是由于这个树组件的节点越来越多&#xff0c;导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多&#xff0c;导致的浏览器卡顿&#xff0c;这里很明显就需要用到虚拟列表的技术&…...

【开发技术】.Net使用FFmpeg视频特定帧上绘制内容

目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法&#xff0c;当前调用一个医疗行业的AI识别算法后返回…...

重启Eureka集群中的节点,对已经注册的服务有什么影响

先看答案&#xff0c;如果正确地操作&#xff0c;重启Eureka集群中的节点&#xff0c;对已经注册的服务影响非常小&#xff0c;甚至可以做到无感知。 但如果操作不当&#xff0c;可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...

中医有效性探讨

文章目录 西医是如何发展到以生物化学为药理基础的现代医学&#xff1f;传统医学奠基期&#xff08;远古 - 17 世纪&#xff09;近代医学转型期&#xff08;17 世纪 - 19 世纪末&#xff09;​现代医学成熟期&#xff08;20世纪至今&#xff09; 中医的源远流长和一脉相承远古至…...

【7色560页】职场可视化逻辑图高级数据分析PPT模版

7种色调职场工作汇报PPT&#xff0c;橙蓝、黑红、红蓝、蓝橙灰、浅蓝、浅绿、深蓝七种色调模版 【7色560页】职场可视化逻辑图高级数据分析PPT模版&#xff1a;职场可视化逻辑图分析PPT模版https://pan.quark.cn/s/78aeabbd92d1...

nnUNet V2修改网络——暴力替换网络为UNet++

更换前,要用nnUNet V2跑通所用数据集,证明nnUNet V2、数据集、运行环境等没有问题 阅读nnU-Net V2 的 U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。 U-Net存在两个局限,一是网络的最佳深度因应用场景而异,这取决于任务的难度和可用于训练的标注数…...

面试高频问题

文章目录 &#x1f680; 消息队列核心技术揭秘&#xff1a;从入门到秒杀面试官1️⃣ Kafka为何能"吞云吐雾"&#xff1f;性能背后的秘密1.1 顺序写入与零拷贝&#xff1a;性能的双引擎1.2 分区并行&#xff1a;数据的"八车道高速公路"1.3 页缓存与批量处理…...

规则与人性的天平——由高考迟到事件引发的思考

当那位身着校服的考生在考场关闭1分钟后狂奔而至&#xff0c;他涨红的脸上写满绝望。铁门内秒针划过的弧度&#xff0c;成为改变人生的残酷抛物线。家长声嘶力竭的哀求与考务人员机械的"这是规定"&#xff0c;构成当代中国教育最尖锐的隐喻。 一、刚性规则的必要性 …...

CSS 工具对比:UnoCSS vs Tailwind CSS,谁是你的菜?

在现代前端开发中&#xff0c;Utility-First (功能优先) CSS 框架已经成为主流。其中&#xff0c;Tailwind CSS 无疑是市场的领导者和标杆。然而&#xff0c;一个名为 UnoCSS 的新星正以其惊人的性能和极致的灵活性迅速崛起。 这篇文章将深入探讨这两款工具的核心理念、技术差…...