圆锥曲线练习

设 A ( x 1 , y 1 ) , B ( x 2 , y 2 ) A\left( x_{1}, y_{1} \right), B\left( x_{2}, y_{2} \right) A(x1,y1),B(x2,y2)
l : y = k ( x + 2 ) l: y = k\left( x+2 \right) l:y=k(x+2)
显然 y = 0 y=0 y=0符合题意
当 k ≠ 0 k\neq 0 k=0
联立 l l l和 C C C
( k 2 + 1 2 ) x 2 + 4 k 2 x + 4 k 2 − 1 = 0 \left(k^2 + \frac{1}{2}\right)x^2 + 4k^2x + 4k^2 - 1=0 (k2+21)x2+4k2x+4k2−1=0
Δ > 0 ⇒ − 2 2 < k < 2 2 \Delta > 0 \Rightarrow - \frac{\sqrt{ 2 }}{2} < k < \frac{\sqrt{ 2 }}{2} Δ>0⇒−22<k<22
由韦达定理
x 1 + x 2 = − 4 k 2 1 2 + k 2 x_{1}+x_{2} =- \frac{4k^2}{\frac{1}{2} + k^2} x1+x2=−21+k24k2
A A A和 B B B的中点为 D ( x 1 + x 2 2 , y 1 + y 2 2 ) D \left( \frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2} \right) D(2x1+x2,2y1+y2)
由 G D GD GD和 l l l垂直得
y 1 + y 2 2 + 1 2 x 1 + x 2 2 − 0 ⋅ k = − 1 k x 1 + x 2 2 + 2 k + 1 2 x 1 + x 2 2 − 0 ⋅ k = − 1 k 2 + 4 k 2 x 1 + x 2 + k x 1 + x 2 = − 1 k 2 − 1 2 − k 2 − 1 2 + k 2 4 k = − 1 k = 1 ± 2 2 \begin{aligned} \frac{\frac{y_{1}+y_{2}}{2} + \frac{1}{2}}{\frac{x_{1}+x_{2}}{2}-0} \cdot k &= -1\\ \frac{k\frac{x_{1}+x_{2}}{2} + 2k + \frac{1}{2}}{\frac{x_{1}+x_{2}}{2}-0} \cdot k &= -1\\ k^2 + \frac{4 k^2}{x_{1} + x_{2}} + \frac{k}{x_{1}+x_{2}} &=-1 \\ k^2 - \frac{1}{2} - k^2 - \frac{\frac{1}{2} + k^2}{4k} &=-1 \\ k &= 1 \pm \frac{\sqrt{ 2 }}{2} \end{aligned} 2x1+x2−02y1+y2+21⋅k2x1+x2−0k2x1+x2+2k+21⋅kk2+x1+x24k2+x1+x2kk2−21−k2−4k21+k2k=−1=−1=−1=−1=1±22
因此 l : y = 0 l: y=0 l:y=0或 y = ( 1 − 2 2 ) ( x + 2 ) y=\left(1-\frac{\sqrt{ 2 }}{2}\right)\left( x+2 \right) y=(1−22)(x+2)
相关文章:
圆锥曲线练习
设 A ( x 1 , y 1 ) , B ( x 2 , y 2 ) A\left( x_{1}, y_{1} \right), B\left( x_{2}, y_{2} \right) A(x1,y1),B(x2,y2) l : y k ( x 2 ) l: y k\left( x2 \right) l:yk(x2) 显然 y 0 y0 y0符合题意 当 k ≠ 0 k\neq 0 k0 联立 l l l和 C C C ( k 2 1 2 ) x…...
STM32时钟树
1 什么是时钟 2 时钟数简图...
NX—UI界面生成的文件在VS上的设置
UI界面保存生成的三个文件 打开VS创建项目,删除自动生成的cpp文件,将生成的hpp和cpp文件拷贝到项目的目录下,并且在VS项目中添加现有项目。 修改VS的输出路径,项目右键选择属性,链接器中的常规,文件路径D:…...
Wine容器内程序执行sh脚本问题研究
问题背景 wpf程序在wine环境执行sh脚本,不能等待脚本执行完成自动退出的问题进行了研究,需求很简单,在wpf程序使用cmd,或者bat ,又或者是直接执行sh脚本,想到脚本执行完成才处理后面的逻辑。但是实际验证过…...
《深度学习》OpenCV轮廓检测 模版匹配 解析及实现
目录 一、模型匹配 1、什么是模型匹配 2、步骤 1)提取模型的特征 2)在图像中查找特征点 3)进行特征匹配 4)模型匹配 3、参数及用法 1、用法 2、参数 1)image:待搜索对象 2)templ&am…...
Java XML
1、XML文件介绍 配置文件:用来保存设置的一些东西。 拿IDEA来举例,比如设置的背景图片,字体信息,字号信息和主题信息等等。 (1)以前是用txt保存的,没有任何优点,而且不利于阅读&a…...
好用的视频压缩工具有哪些?这4款千万不要错过
视频压缩的方法有很多种,像我们手机里的视频剪辑工具,手机和电脑自带的压缩功能,在线压缩网站,专业压缩软件压缩等等。不同的场景和需求下大家可以选择不同的工具,但是如果碰到需要大量和经常压缩视频的话,…...
【Python爬虫系列】_016.关于登录和验证码
我 的 个 人 主 页:👉👉 失心疯的个人主页 👈👈 入 门 教 程 推 荐 :👉👉 Python零基础入门教程合集 👈👈 虚 拟 环 境 搭 建 :👉&…...
基于opencv实现双目立体匹配点云距离
双目相机或两个单目相机。 一、相机标定 MATLAB软件,打开双目标定app。 点击add images,弹出加载图像的窗口,分别导入左图和右图,设置黑白格长度(标定板的长度一般为20)。 点击确定,弹出加载…...
RabbitMQ高级篇,进阶内容
强烈建议在看本篇博客之前快速浏览文章:RabbitMQ基础有这一篇就够了 RabbitMQ高级篇 0. 前言1. 发送者的可靠性1.1 生产者重试机制1.2 生产者确认机制1.3 实现生产者确认 2. MQ的可靠性2.1 MQ持久化2.2 LazyQueue 3. 消费者的可靠性3.1 消费者确认机制3.2 失败重试策…...
STM32重定义printf,实现串口打印
在“usart.c”文件中加入以下代码 #ifdef __GNUC__#define PUTCHAR_PROTOTYPE int __io_putchar(int ch) #else#define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f) #endifPUTCHAR_PROTOTYPE{HAL_UART_Transmit(&huart1 , (uint8_t *)&ch, 1, 0xFFFF);return ch; }…...
项目进度
变为负进度了,还是要用baseservlet,我就又重新写了一部分,看了好几遍视频,突然就想明白了,感觉每次要上课,就时间不连续思路总是断,今天晚自习算是搞懂了怎么写了,就是代码有点多&am…...
Android的内核
Android的内核是基于Linux的长期支持版本的“Android通用内核(ACK)”。 Android作为一个广泛使用的操作系统,其根基在于内核的设计和功能。下面将深入探讨Android内核的各个方面,从其基本结构到与Linux内核的关系,再到内核的版本管理及在设备…...
Github Wiki 超链接 转 码云Gitee Wiki 超链接
Github Wiki 超链接 转 码云Gitee Wiki 超链接 Github 是 :[[相对路径]] Gitee 是 :[链接文字](./相对路径) 查找:\[\[(.*?)\]\] 替换:[$1]\(./$1\) 或替换:**[$1]\(./$1\)** (码云的超链接,很…...
Android10源码刷入Pixel2以及整合GMS
一、ASOP源码下载 具体可以参考我之前发布的文章 二、下载相关驱动包 这一步很关键,关系到编译后的镜像能否刷入后运行 下载链接:Nexus 和 Pixel 设备的驱动程序二进制文件 如下图所示,将两个驱动程序上传到Ubuntu服务器,并进行解压,得到两个脚本: 下载解压后会有两…...
wpf触发与模板的使用示例:批量生产工具
批量生产工具 <Window x:Class"WpfM20UpdateFW.MainWindow"xmlns"http://schemas.microsoft.com/winfx/2006/xaml/presentation"xmlns:x"http://schemas.microsoft.com/winfx/2006/xaml"xmlns:d"http://schemas.microsoft.com/expressio…...
brew install node提示:Error: No such keg: /usr/local/Cellar/node
打开本地文件发现Cellar目录下无法生成 node文件,应该是下载时出现问题,重复下载无法解决问题,只能重新安装brew。 步骤1(安装 brew): /bin/zsh -c “$(curl -fsSL https://gitee.com/cunkai/HomebrewCN/ra…...
记录一下gitlab社区版的安装教程
目录 1.更新系统软件包 2.安装必要的依赖 3.添加GitLab源 3.1对于GitLab Enterprise Edition(EE): 3.2对于GitLab Community Edition(CE): 4.安装GitLab 4.1安装GitLab Enterprise Edition(E…...
20. 如何在MyBatis中处理多表关联查询?常见的实现方式有哪些?
在MyBatis中处理多表关联查询是一项常见的需求,特别是在关系型数据库中存储复杂的实体关系时。MyBatis提供了多种方式来实现多表关联查询,常见的实现方式包括使用<association>和<collection>标签在<resultMap>中进行对象关系映射&…...
【百日算法计划】:每日一题,见证成长(013)
题目 回文链表 给你一个单链表的头节点 head ,请你判断该链表是否为回文链表。如果是,返回 true ;否则,返回 false 。 输入:head [1,2,2,1] 输出:true 思路 找到中间节点反转后半部分链表前后链表顺序比…...
基于算法竞赛的c++编程(28)结构体的进阶应用
结构体的嵌套与复杂数据组织 在C中,结构体可以嵌套使用,形成更复杂的数据结构。例如,可以通过嵌套结构体描述多层级数据关系: struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...
为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?
在建筑行业,项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升,传统的管理模式已经难以满足现代工程的需求。过去,许多企业依赖手工记录、口头沟通和分散的信息管理,导致效率低下、成本失控、风险频发。例如&#…...
1688商品列表API与其他数据源的对接思路
将1688商品列表API与其他数据源对接时,需结合业务场景设计数据流转链路,重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点: 一、核心对接场景与目标 商品数据同步 场景:将1688商品信息…...
CocosCreator 之 JavaScript/TypeScript和Java的相互交互
引擎版本: 3.8.1 语言: JavaScript/TypeScript、C、Java 环境:Window 参考:Java原生反射机制 您好,我是鹤九日! 回顾 在上篇文章中:CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...
解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错
出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上,所以报错,到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本,cu、torch、cp 的版本一定要对…...
IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)
文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...
vue3+vite项目中使用.env文件环境变量方法
vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量,这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...
html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码
目录 一、👨🎓网站题目 二、✍️网站描述 三、📚网站介绍 四、🌐网站效果 五、🪓 代码实现 🧱HTML 六、🥇 如何让学习不再盲目 七、🎁更多干货 一、👨…...
毫米波雷达基础理论(3D+4D)
3D、4D毫米波雷达基础知识及厂商选型 PreView : https://mp.weixin.qq.com/s/bQkju4r6med7I3TBGJI_bQ 1. FMCW毫米波雷达基础知识 主要参考博文: 一文入门汽车毫米波雷达基本原理 :https://mp.weixin.qq.com/s/_EN7A5lKcz2Eh8dLnjE19w 毫米波雷达基础…...
nnUNet V2修改网络——暴力替换网络为UNet++
更换前,要用nnUNet V2跑通所用数据集,证明nnUNet V2、数据集、运行环境等没有问题 阅读nnU-Net V2 的 U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。 U-Net存在两个局限,一是网络的最佳深度因应用场景而异,这取决于任务的难度和可用于训练的标注数…...
