圆锥曲线练习
设 A ( x 1 , y 1 ) , B ( x 2 , y 2 ) A\left( x_{1}, y_{1} \right), B\left( x_{2}, y_{2} \right) A(x1,y1),B(x2,y2)
l : y = k ( x + 2 ) l: y = k\left( x+2 \right) l:y=k(x+2)
显然 y = 0 y=0 y=0符合题意
当 k ≠ 0 k\neq 0 k=0
联立 l l l和 C C C
( k 2 + 1 2 ) x 2 + 4 k 2 x + 4 k 2 − 1 = 0 \left(k^2 + \frac{1}{2}\right)x^2 + 4k^2x + 4k^2 - 1=0 (k2+21)x2+4k2x+4k2−1=0
Δ > 0 ⇒ − 2 2 < k < 2 2 \Delta > 0 \Rightarrow - \frac{\sqrt{ 2 }}{2} < k < \frac{\sqrt{ 2 }}{2} Δ>0⇒−22<k<22
由韦达定理
x 1 + x 2 = − 4 k 2 1 2 + k 2 x_{1}+x_{2} =- \frac{4k^2}{\frac{1}{2} + k^2} x1+x2=−21+k24k2
A A A和 B B B的中点为 D ( x 1 + x 2 2 , y 1 + y 2 2 ) D \left( \frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2} \right) D(2x1+x2,2y1+y2)
由 G D GD GD和 l l l垂直得
y 1 + y 2 2 + 1 2 x 1 + x 2 2 − 0 ⋅ k = − 1 k x 1 + x 2 2 + 2 k + 1 2 x 1 + x 2 2 − 0 ⋅ k = − 1 k 2 + 4 k 2 x 1 + x 2 + k x 1 + x 2 = − 1 k 2 − 1 2 − k 2 − 1 2 + k 2 4 k = − 1 k = 1 ± 2 2 \begin{aligned} \frac{\frac{y_{1}+y_{2}}{2} + \frac{1}{2}}{\frac{x_{1}+x_{2}}{2}-0} \cdot k &= -1\\ \frac{k\frac{x_{1}+x_{2}}{2} + 2k + \frac{1}{2}}{\frac{x_{1}+x_{2}}{2}-0} \cdot k &= -1\\ k^2 + \frac{4 k^2}{x_{1} + x_{2}} + \frac{k}{x_{1}+x_{2}} &=-1 \\ k^2 - \frac{1}{2} - k^2 - \frac{\frac{1}{2} + k^2}{4k} &=-1 \\ k &= 1 \pm \frac{\sqrt{ 2 }}{2} \end{aligned} 2x1+x2−02y1+y2+21⋅k2x1+x2−0k2x1+x2+2k+21⋅kk2+x1+x24k2+x1+x2kk2−21−k2−4k21+k2k=−1=−1=−1=−1=1±22
因此 l : y = 0 l: y=0 l:y=0或 y = ( 1 − 2 2 ) ( x + 2 ) y=\left(1-\frac{\sqrt{ 2 }}{2}\right)\left( x+2 \right) y=(1−22)(x+2)
相关文章:

圆锥曲线练习
设 A ( x 1 , y 1 ) , B ( x 2 , y 2 ) A\left( x_{1}, y_{1} \right), B\left( x_{2}, y_{2} \right) A(x1,y1),B(x2,y2) l : y k ( x 2 ) l: y k\left( x2 \right) l:yk(x2) 显然 y 0 y0 y0符合题意 当 k ≠ 0 k\neq 0 k0 联立 l l l和 C C C ( k 2 1 2 ) x…...

STM32时钟树
1 什么是时钟 2 时钟数简图...

NX—UI界面生成的文件在VS上的设置
UI界面保存生成的三个文件 打开VS创建项目,删除自动生成的cpp文件,将生成的hpp和cpp文件拷贝到项目的目录下,并且在VS项目中添加现有项目。 修改VS的输出路径,项目右键选择属性,链接器中的常规,文件路径D:…...

Wine容器内程序执行sh脚本问题研究
问题背景 wpf程序在wine环境执行sh脚本,不能等待脚本执行完成自动退出的问题进行了研究,需求很简单,在wpf程序使用cmd,或者bat ,又或者是直接执行sh脚本,想到脚本执行完成才处理后面的逻辑。但是实际验证过…...

《深度学习》OpenCV轮廓检测 模版匹配 解析及实现
目录 一、模型匹配 1、什么是模型匹配 2、步骤 1)提取模型的特征 2)在图像中查找特征点 3)进行特征匹配 4)模型匹配 3、参数及用法 1、用法 2、参数 1)image:待搜索对象 2)templ&am…...

Java XML
1、XML文件介绍 配置文件:用来保存设置的一些东西。 拿IDEA来举例,比如设置的背景图片,字体信息,字号信息和主题信息等等。 (1)以前是用txt保存的,没有任何优点,而且不利于阅读&a…...

好用的视频压缩工具有哪些?这4款千万不要错过
视频压缩的方法有很多种,像我们手机里的视频剪辑工具,手机和电脑自带的压缩功能,在线压缩网站,专业压缩软件压缩等等。不同的场景和需求下大家可以选择不同的工具,但是如果碰到需要大量和经常压缩视频的话,…...

【Python爬虫系列】_016.关于登录和验证码
我 的 个 人 主 页:👉👉 失心疯的个人主页 👈👈 入 门 教 程 推 荐 :👉👉 Python零基础入门教程合集 👈👈 虚 拟 环 境 搭 建 :👉&…...

基于opencv实现双目立体匹配点云距离
双目相机或两个单目相机。 一、相机标定 MATLAB软件,打开双目标定app。 点击add images,弹出加载图像的窗口,分别导入左图和右图,设置黑白格长度(标定板的长度一般为20)。 点击确定,弹出加载…...

RabbitMQ高级篇,进阶内容
强烈建议在看本篇博客之前快速浏览文章:RabbitMQ基础有这一篇就够了 RabbitMQ高级篇 0. 前言1. 发送者的可靠性1.1 生产者重试机制1.2 生产者确认机制1.3 实现生产者确认 2. MQ的可靠性2.1 MQ持久化2.2 LazyQueue 3. 消费者的可靠性3.1 消费者确认机制3.2 失败重试策…...

STM32重定义printf,实现串口打印
在“usart.c”文件中加入以下代码 #ifdef __GNUC__#define PUTCHAR_PROTOTYPE int __io_putchar(int ch) #else#define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f) #endifPUTCHAR_PROTOTYPE{HAL_UART_Transmit(&huart1 , (uint8_t *)&ch, 1, 0xFFFF);return ch; }…...

项目进度
变为负进度了,还是要用baseservlet,我就又重新写了一部分,看了好几遍视频,突然就想明白了,感觉每次要上课,就时间不连续思路总是断,今天晚自习算是搞懂了怎么写了,就是代码有点多&am…...

Android的内核
Android的内核是基于Linux的长期支持版本的“Android通用内核(ACK)”。 Android作为一个广泛使用的操作系统,其根基在于内核的设计和功能。下面将深入探讨Android内核的各个方面,从其基本结构到与Linux内核的关系,再到内核的版本管理及在设备…...

Github Wiki 超链接 转 码云Gitee Wiki 超链接
Github Wiki 超链接 转 码云Gitee Wiki 超链接 Github 是 :[[相对路径]] Gitee 是 :[链接文字](./相对路径) 查找:\[\[(.*?)\]\] 替换:[$1]\(./$1\) 或替换:**[$1]\(./$1\)** (码云的超链接,很…...

Android10源码刷入Pixel2以及整合GMS
一、ASOP源码下载 具体可以参考我之前发布的文章 二、下载相关驱动包 这一步很关键,关系到编译后的镜像能否刷入后运行 下载链接:Nexus 和 Pixel 设备的驱动程序二进制文件 如下图所示,将两个驱动程序上传到Ubuntu服务器,并进行解压,得到两个脚本: 下载解压后会有两…...

wpf触发与模板的使用示例:批量生产工具
批量生产工具 <Window x:Class"WpfM20UpdateFW.MainWindow"xmlns"http://schemas.microsoft.com/winfx/2006/xaml/presentation"xmlns:x"http://schemas.microsoft.com/winfx/2006/xaml"xmlns:d"http://schemas.microsoft.com/expressio…...

brew install node提示:Error: No such keg: /usr/local/Cellar/node
打开本地文件发现Cellar目录下无法生成 node文件,应该是下载时出现问题,重复下载无法解决问题,只能重新安装brew。 步骤1(安装 brew): /bin/zsh -c “$(curl -fsSL https://gitee.com/cunkai/HomebrewCN/ra…...

记录一下gitlab社区版的安装教程
目录 1.更新系统软件包 2.安装必要的依赖 3.添加GitLab源 3.1对于GitLab Enterprise Edition(EE): 3.2对于GitLab Community Edition(CE): 4.安装GitLab 4.1安装GitLab Enterprise Edition(E…...

20. 如何在MyBatis中处理多表关联查询?常见的实现方式有哪些?
在MyBatis中处理多表关联查询是一项常见的需求,特别是在关系型数据库中存储复杂的实体关系时。MyBatis提供了多种方式来实现多表关联查询,常见的实现方式包括使用<association>和<collection>标签在<resultMap>中进行对象关系映射&…...

【百日算法计划】:每日一题,见证成长(013)
题目 回文链表 给你一个单链表的头节点 head ,请你判断该链表是否为回文链表。如果是,返回 true ;否则,返回 false 。 输入:head [1,2,2,1] 输出:true 思路 找到中间节点反转后半部分链表前后链表顺序比…...

PCL 读取和保存点云
目录 一、概述 1.1原理 1.2实现步骤 二、代码实现 2.1关键函数 2.2完整代码 三、实现效果 PCL点云算法汇总及实战案例汇总的目录地址链接: PCL点云算法与项目实战案例汇总(长期更新) 一、概述 1.1原理 PCL (Point Cloud Library) 是…...

js | TypeError: Cannot read properties of null (reading ‘indexOf’) 【解决】
js | TypeError: Cannot read properties of null (reading ‘indexOf’) 【解决】 描述 概述 在前端开发中,遇到TypeError: Cannot read properties of null (reading indexOf)这类错误并不罕见。这个错误通常表明你试图在一个null值上调用indexOf方法,…...

微信小程序-formData使用
作者:fyupeng 技术专栏:☞ https://github.com/fyupeng 项目地址:☞ https://github.com/fyupeng/distributed-blog-system-api 留给读者 一、介绍 在小程序中使用formdata上传数据,可实现多文件上传 跟浏览器中的FormData对象类…...

潜在语义分析(Latent Semantic Analysis,LSA)—无监督学习方法、非概率模型、判别模型、线性模型、非参数化模型、批量学习
定义 输入: X [ x 11 x 12 ⋯ x 1 n x 21 x 22 ⋯ x 2 n ⋮ ⋮ ⋮ ⋮ x m 1 x m 2 ⋯ x m n ] , 文本集合 D { d 1 , d 2 , ⋯ , d n } , 单词集合 W { ω 1 , ω 2 , ⋯ , ω m } , x i j : 单词 ω i 在文本 d j 中出现的频数或权值 X\left[ \begin{array}{cccc} x_{11} …...

【安全漏洞】MySQL 8.0.33 、CVE-2023-22102
mysql-connector-java:jar:8.0.33已经重新定位到mysql-connector-j:jar:8.0.33 安全漏洞描述 在SBOM扫描过程中,检测到mysql-connector-j:8.0.33存在如下高危安全漏洞: CVE-2023-22102:Oracle MySQL Connectors 8.1.0 版本之前存在安全漏洞&…...

Flutter 响应式框架
一、简介 响应式框架会自动使用户界面适应不同的屏幕大小。创建你的用户界面一次,让它显示完美的像素在移动,平板电脑和桌面! 1.1 问题 支持多种显示尺寸通常意味着要多次重新创建同一布局。在传统的Bootstrap方法下,构建响应式…...

电脑AE特效软件 After Effects软件2017中文版下载安装指南 (Win/Mac)
电脑ae特效软件 After Effects软件2017中文版下载安装win/... 电脑AE特效软件 After Effects软件2017中文版下载安装指南 (Win/Mac) Adobe After Effects 2017 是一款功能强大的视频后期处理软件,广泛应用于影视特效制作、动态图形设计、视觉效果合成等领域。其丰…...

C#中的装箱和拆箱是什么
在 C# 中,装箱(Boxing)和拆箱(Unboxing)是与值类型和引用类型相关的概念,涉及到值类型的数据在托管堆(Heap)上的存储方式。 装箱(Boxing) 装箱是指将值类型…...

在 Debian 12 上安装中文五笔输入法
在 Debian 12 上安装中文五笔输入法,你可以通过以下步骤进行: 更新系统包列表: 打开终端,首先更新你的系统包列表: sudo apt update安装输入法框架: 安装 fcitx5 输入法框架: sudo apt install …...

整流器制造5G智能工厂物联数字孪生平台,推进制造业数字化转型
整流器制造行业作为制造业的重要组成部分,也在积极探索数字化转型的新路径。整流器,作为电力电子领域的关键元件,广泛应用于通信、工业控制、新能源等多个领域,其制造过程的智能化升级不仅关乎产品性能的提升,更是推动…...