python 实现euler modified变形欧拉法算法
euler modified变形欧拉法算法介绍
Euler Modified(改进)变形欧拉法算法,也被称为欧拉修改法或修正欧拉法(Euler Modified Method),是一种用于数值求解微分方程的改进方法。这种方法在传统欧拉法的基础上进行了优化,以减少误差。
基本原理
欧拉法是一种通过逐步逼近来计算函数值的方法,但在某些情况下,传统的欧拉法可能会引入较大的误差。改进的欧拉法通过使用平均斜率来减小误差。其基本思想是:在每个步骤中,首先使用初始点的斜率来估计下一个点的值,然后使用这两个点的平均斜率来计算该点的函数值。这种方法能更好地逼近真实的函数曲线。
计算步骤
- 初始化:设定初始条件,包括初始点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0),步长ℎ,以及微分方程的表达式 y ′ = f ( x , y ) y′=f(x,y) y′=f(x,y)。
- 预测步骤:使用欧拉法的公式 y p r e d = y n + h ⋅ f ( x n , y n ) y_{pred}=y_n+h⋅f(x_n,y_n) ypred=yn+h⋅f(xn,yn)来预测下一个点的𝑦值,其中 y n y_n yn是当前点的𝑦值,{𝑥_𝑛}是当前点的𝑥值。
- 斜率计算:使用预测得到的点 ( x n + 1 , y p r e d ) (x_{n+1},y_{pred}) (xn+1,ypred)和原始点 ( x n , y n ) (x_n,y_n) (xn,yn)来计算两个点的平均斜率 k a v g = f ( x n + 1 , y p r e d ) + f ( x n , y n ) 2 k_{avg}=\frac{f(x_{n+1},y_{pred})+f(x_n,y_n)}{2} kavg=2f(xn+1,ypred)+f(xn,yn)。
- 校正步骤:使用平均斜率来计算下一个点的𝑦值,即 y n + 1 = y n + h ⋅ k a v g y_{n+1}=y_n+h⋅k_{avg} yn+1=yn+h⋅kavg。
优点与缺点
优点:
改进的欧拉法比传统的欧拉法具有更高的精度,因为它使用了平均斜率来减少误差。
它的实现相对简单,计算速度也较快。
缺点:
尽管比传统的欧拉法更精确,但改进的欧拉法仍然是一种一阶方法,其精度可能不足以满足所有需求。对于需要更高精度的应用,可能需要使用更高级的数值方法,如龙格-库塔法(Runge-Kutta methods)。
注意事项
- 在使用改进的欧拉法时,需要仔细选择步长ℎ,因为步长的大小会直接影响算法的精度和稳定性。
- 改进的欧拉法适用于求解常微分方程的初值问题,但不适用于所有类型的微分方程。
总的来说,Euler Modified(改进)变形欧拉法算法是一种有效的数值求解微分方程的方法,它在保持计算简单性的同时,提高了传统欧拉法的精度。然而,对于需要更高精度的应用,可能需要考虑其他更高级的数值方法。
euler modified变形欧拉法算法python实现样例
Euler modified (改进)方法是一种数值解微分方程的方法,它在Euler方法的基础上进行了修正,以提高数值解的准确性。下面是使用Python实现Euler modified方法的示例代码:
import numpy as np
import matplotlib.pyplot as pltdef euler_modified(f, t0, tn, y0, h):n = int((tn - t0) / h)t = np.linspace(t0, tn, n+1)y = np.zeros(n+1)y[0] = y0for i in range(n):y_star = y[i] + h * f(t[i], y[i])y[i+1] = y[i] + h * (f(t[i], y[i]) + f(t[i+1], y_star)) / 2.0return t, y# 定义微分方程 dy/dt = f(t, y)
def f(t, y):return y * (1 - t)# 设置初始条件和步长
t0 = 0
tn = 1
y0 = 1
h = 0.1# 使用Euler modified方法求解微分方程
t, y = euler_modified(f, t0, tn, y0, h)# 绘制数值解的图像
plt.plot(t, y)
plt.xlabel('t')
plt.ylabel('y')
plt.title('Numerical Solution of dy/dt = y * (1 - t)')
plt.grid(True)
plt.show()
在代码中,首先定义了一个名为euler_modified
的函数,它接受微分方程f
、积分的起始时间t0
、终止时间tn
、初始条件y0
和步长h
作为输入,然后利用Euler modified方法求解微分方程,并返回时间和数值解的数组。
然后定义了一个简单的微分方程f(t, y) = y * (1 - t)
作为示例。然后设置初始条件t0=0
、tn=1
、y0=1
和步长h=0.1
。最后调用euler_modified
函数得到数值解,并使用matplotlib.pyplot
绘制数值解的图像。
相关文章:
python 实现euler modified变形欧拉法算法
euler modified变形欧拉法算法介绍 Euler Modified(改进)变形欧拉法算法,也被称为欧拉修改法或修正欧拉法(Euler Modified Method),是一种用于数值求解微分方程的改进方法。这种方法在传统欧拉法的基础上进…...
strcpy 函数及其缺点
目录 一、概念 二、strcpy 函数有什么缺点 1. 缺乏边界检查 2. 容易引发未定义行为 3. 不适合动态和未知长度的字符串操作 4. 替代方案的可用性 5. 效率问题 一、概念 strcpy 是 C 语言中的一个标准库函数,用于将源字符串复制到目标字符串中。它定义在 <…...

区块链-P2P(八)
前言 P2P网络(Peer-to-Peer Network)是一种点对点的网络结构,它没有中心化的服务器或者管理者,所有节点都是平等的。在P2P网络中,每个节点都可以既是客户端也是服务端,这种网络结构的优点是去中心化、可扩展…...

数据库管理的利器Navicat —— 全面测评与热门产品推荐
在数据库管理领域,Navicat无疑是一款深受欢迎的软件。作为一个强大的数据库管理和开发工具,它支持多种数据库类型,包括MySQL、MariaDB、MongoDB、SQL Server、Oracle、PostgreSQL等。本文将全面测评Navicat的核心功能,同时推荐几款…...

如何让Google收录我的网站?
其实仅仅只是收录,只要在GSC提交网址,等个两三天,一般就能收录,但收录是否会掉,这篇内容收录了是否有展现,排名,就是另外一个课题了,如果不收录,除了说明你的网站有问题&…...

03 Flask-添加配置信息
回顾之前学习的内容 02 Flask-快速上手 Flask 中最简单的web应用组成 1. 导入核心库 Flask from flask import Flask2. 实例化 web应用 注意:不要漏了 app Flask(__name__) 中的 __name__ 表示:是从当前的py文件实例化 app Flask(__name__)3. 创…...

Codes 开源研发项目管理平台——敏捷测试管理创新解决方案
前言 Codes 是国内首款重新定义 SaaS 模式的开源项目管理平台,支持云端认证、本地部署、全部功能开放,并且对30人以下团队免费。它通过整合迭代、看板、度量和自动化等功能,简化测试协同工作,使敏捷测试更易于实施。并提供低成本的…...

耗时一个月,我做了一个网页视频编辑器
最近又肝了一个多月,终于把这个网页视频编辑器做好了,下面我来简单介绍一下如何使用 注意目前该功能还处在测试阶段,可能会有很多问题,后续我会不断修复 体验地址 app.zyjj.cc 界面介绍 整个剪辑界面包括4个区,左边是…...

uniapp 做一个查看图片的组件,图片可缩放移动
因为是手机端,所以需要触摸可移动,双指放大缩小。 首先在components里建个组件 查看图片使用 uni-popup 弹窗 要注意 transform的translate和scale属性在同一标签上不会一起生效 移动就根据触摸效果进行偏移图片 缩放就根据双指距离的变大变小进行缩…...

卡车配置一键启动无钥匙进入手机控车
卡车智能一键启动无钥匙进入手机控车,通过手机应用程序与汽车内置硬件、软件的无线通信,实现对汽车的远程控制。 卡车改装一键启动的步骤包括安装门把手的感应装置、拆卸仪表台和门板,取出内部的待接线束,并将一键启动…...
计算机网络基础概念 交换机、路由器、网关、TBOX
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、VLAN是什么?二 、交换机三、路由器四、网关五、TBOX六、问题1 、网关和交换机的区别2、网关和路由器的区别 总结 前言 工作有感而发࿰…...

labview禁用8080端口
需求背景 最近电脑上安装了labview全家桶,发现idea的8080端口项目启动报错,一直提示8080端口被占用。最简单的办法就是找到8080端口的服务,然后关闭这个服务。但是我不想这么做,我想把labview的web服务器的端口给修改了。 操作教程 1、cmd查看8080端口 2、windows进程 同…...
字符串的KMP算法详解及C/C++代码实现
1. 原由 紧接上文,我们知道了暴力匹配的算法在时间运行上的缺陷,假设字符串T的长度为n,字符串P的长度为m,则整个算法的时间复杂度为O( n * m ),而对于一个复杂的现实情况而言 n >> m >> 2 (即…...

2024年数学建模比赛题目及解题代码
目录 一、引言 1. 1竞赛背景介绍 1.1.1数学建模竞赛概述 1.1.2生产过程决策问题在竞赛中的重要性 1.2 解题前准备 1.2.2 工具与资源准备 1.2.3 心态调整与策略规划 二、问题理解与分析 三、模型构建与求解 3.1 模型选择与设计 3.1.1 根据问题特性选择合适的数学模型类…...

BERT 论文逐段精读【论文精读】
BERT: 近 3 年 NLP 最火 CV: 大数据集上的训练好的 NN 模型,提升 CV 任务的性能 —— ImageNet 的 CNN 模型 NLP: BERT 简化了 NLP 任务的训练,提升了 NLP 任务的性能 BERT 如何站在巨人的肩膀上的?使用了哪些 NLP 已有的技术和思想ÿ…...
在Flask中实现跨域请求(CORS)
在Flask中实现跨域请求(CORS,Cross-Origin Resource Sharing)主要涉及到对Flask应用的配置,以允许来自不同源的请求访问服务器上的资源。以下是在Flask中实现CORS的详细步骤和方法: 一、理解CORS CORS是一种机制&…...

在桌面商业分析应用程序中启用高级 Web UI
挑战 Mercur Business Control 应用程序在企业界,尤其是金融领域,拥有悠久的应用历史。它帮助企业处理、可视化和分析海量数据,从而做出明智的商业决策。 随着产品的不断演进和现代化,Mercur Solutions AB 为该应用创建了 Web 客…...

CentOS Stream 8 通过 Packstack 安装开源 OpenStack(V版)
1、环境规划以及网卡配置 controller IP:192.168.235.101 compute IP:192.168.235.102 控制节点 [rootluck ~]# cd /etc/sysconfig/network-scripts/ [rootluck network-scripts]# vi ifcfg-ens160 [rootluck network-scripts]# cat ifcfg-ens160 TYP…...
OpenSSL工具验证RSA证书
openssl x509 是一个用于处理 X.509 证书的命令行工具。常用的 openssl x509 命令: -in <file>:指定输入文件。-out <file>:指定输出文件。-noout:不输出证书信息。-text:以文本格式输出证书信息。-pubke…...

架构师白话分布式系统
对于分布式系统的定义,大致可以理解为如下的两个点 分布式系统从整体的体量来说,它内部是由很多的服务器、服务实例组成。所提供的用户服务是由一组相互独立运行的服务器来提供。对于用户来说,这个多服务器的系统就跟一个服务器一样,感觉不到每个单独的服务器实例的存在。从…...
Vim 调用外部命令学习笔记
Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...

龙虎榜——20250610
上证指数放量收阴线,个股多数下跌,盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型,指数短线有调整的需求,大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的:御银股份、雄帝科技 驱动…...

从WWDC看苹果产品发展的规律
WWDC 是苹果公司一年一度面向全球开发者的盛会,其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具,对过去十年 WWDC 主题演讲内容进行了系统化分析,形成了这份…...

剑指offer20_链表中环的入口节点
链表中环的入口节点 给定一个链表,若其中包含环,则输出环的入口节点。 若其中不包含环,则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...

第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明
AI 领域的快速发展正在催生一个新时代,智能代理(agents)不再是孤立的个体,而是能够像一个数字团队一样协作。然而,当前 AI 生态系统的碎片化阻碍了这一愿景的实现,导致了“AI 巴别塔问题”——不同代理之间…...

如何理解 IP 数据报中的 TTL?
目录 前言理解 前言 面试灵魂一问:说说对 IP 数据报中 TTL 的理解?我们都知道,IP 数据报由首部和数据两部分组成,首部又分为两部分:固定部分和可变部分,共占 20 字节,而即将讨论的 TTL 就位于首…...
稳定币的深度剖析与展望
一、引言 在当今数字化浪潮席卷全球的时代,加密货币作为一种新兴的金融现象,正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而,加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下,稳定…...

网站指纹识别
网站指纹识别 网站的最基本组成:服务器(操作系统)、中间件(web容器)、脚本语言、数据厍 为什么要了解这些?举个例子:发现了一个文件读取漏洞,我们需要读/etc/passwd,如…...

【C++特殊工具与技术】优化内存分配(一):C++中的内存分配
目录 一、C 内存的基本概念 1.1 内存的物理与逻辑结构 1.2 C 程序的内存区域划分 二、栈内存分配 2.1 栈内存的特点 2.2 栈内存分配示例 三、堆内存分配 3.1 new和delete操作符 4.2 内存泄漏与悬空指针问题 4.3 new和delete的重载 四、智能指针…...
Java并发编程实战 Day 11:并发设计模式
【Java并发编程实战 Day 11】并发设计模式 开篇 这是"Java并发编程实战"系列的第11天,今天我们聚焦于并发设计模式。并发设计模式是解决多线程环境下常见问题的经典解决方案,它们不仅提供了优雅的设计思路,还能显著提升系统的性能…...