大模型 LLM(Large Language Models)如今十分火爆,对于初入此领域的新人小白来说,应该如何入门 LLM 呢?是否有值得推荐的入门教程呢?
前言
很明显,这是一个偏学术方向的指南要求,所以我会把整个LLM应用的从数学到编程语言,从框架到常用模型的学习方法,给你捋一个通透。也可能是不爱学习的劝退文。
通常要达到熟练的进行LLM相关的学术研究与开发,至少你要准备 数学、编码、常用模型的知识,还有LLM相关的知识的准备。
TL;DR
要求总结:
数学知识:线性代数、高数、概率
开发语言:Python, C/C++
开发框架:Numpy/Pytorch/Tensorflow/Keras/Onnx
常用模型:MLP、CNN、RNN、Transformer(GPT-2、RWKV、Mamba、TTT)
LLM相关:Prompt各种理论框架,RAG各种技术,FineTune的几种方法
好了,开始正式的劝退版吧。
数学是基础,但是对于研究生来讲可能又不是大问题。
通常数学对于毕业后的人来讲,需要简单的看一下,对于一个研究生一年级的人来讲不是问题。毕竟线性代数、高数、概率都是必考。只有凸优化这东西,可能是门需要自己再看一下的课程。
线性代数:关键概念包括向量、矩阵、。重要的公式涉及矩阵乘法、及特征值方程Av=λv,其中 A是矩阵,v 是特征向量,λ是特征值。
高数:基本是微积分,重点是理解极限、导数和积分的概念。函数 f(x) 在点 x的导数由f′(x)=limh→0 f(x+h)−f(x) 给出,基本微积分定理将微分与积分联系起来。
概率:关键点包括概率公理、条件概率、随机变量和分布。例如,贝叶斯定理由P(A∣B)=P(B∣A)P(A)/P(B)给出,它帮助在发生B 的情况下更新 A 的概率。
凸优化:关注目标函数的问题。关键概念包括凸集、凸函数、梯度下降。梯度下降更新规则可以表示为 xn+1 =xn −α∇f(xn ),其中 α是学习率。可能你需要在此努力一下。
编码,以前需要大量的时间,现在你只需要适应AI的Copilot
原来编码我要写一堆的,但是最近的AI告诉我,Cursor或者任意的AI大模型都可以指导你完成基本的编码工作了。
所以你只需要知道,自己需要下面这些知识就好了。
核心开发语言要掌握Python、C/C++。 如果你有更强烈的意愿,可以再去研究一下CUDA相关的知识。
Numpy 主要是掌握各种数据的使用方法。
Pytorch 与 Tensor、 Keras 就是完成各种网络及训练的方法。 Onnx就是有些模型是基于它的发布,你要会使用它来运行及分析这个模型。
但这些其实只需要你会问AI大模型就好了。
常用模型,这些可能是让你了解常识,面未来的突破就在历史
MLP、CNN、RNN的典型模型你可能要相对熟悉一点,我建议你自己手写一下。
建议是这些网络
LeNet-5: 这是最早的卷积神经网络之一。
AlexNet: AlexNet在ImageNet图像分类竞赛中表现优异,标志着深度学习的广泛应用。
VGGNet: VGGNet以其深度和使用的小(3x3)而闻名,常用的模型有VGG16和VGG19。
ResNet (Residual Networks): ResNet通过引入残差连接解决了深度网络中,最著名的版本是ResNet-50、ResNet-101。
Long Short-Term Memory (LSTM):LSTM通过引入门控机制解决了标准RNN中的长期依赖问题,是处理序列数据的标准模型之一。
Gated Recurrent Unit (GRU): GRU是LSTM的简化版本,具有类似的性能但计算效率更高。
Bidirectional RNN: 这是RNN的一种变体,可以同时考虑序列中前后文信息,通常用于自然语言任务。
而新一些架构,可能你要看RWKV、Mamba、TTT这三个新架构,它们的潜力还是不错的。
LLM相关
你的目标是这个,其实现在所有做人工智能的基本上都集中在这儿了。而且在卷这样简单的一个架构的各个方面:
推荐自己手写一个 Transformer 模型,至少要写一个 Attention 的结构。还要看懂下面这个图。你就能体会到一个至简的模型是怎么遵循 Scaling Law的,AGI 可能就在这个简单的重复与变大中了!
当然了,一定要用数据跑个训练。GPT-2的就有非常不错的示范了。
如果你能顺利完成到这儿,我想你的水平,混个论文,搞到研究生毕业在大部分院校应该不是大问题了。如果是TOP几的。。。你自己再想一下吧。
但是,如果你觉得这些难?想找个效率更高,难度更简单的。那我建议你听个课吧。毕竟,课程是一个相对体系化,而且有人不断的能讲解且解决你的疑问的手段。相当于用钱买了你的时间与知识。
大模型资源分享
“最先掌握 AI 的人,相较于较晚掌握 AI 的人而言,将具备竞争优势。”这句话放在计算机、互联网以及移动互联网的开局时期,同样适用。
我在一线互联网企业工作长达十余年,期间指导过众多同行后辈,助力许多人实现了学习与成长。为此,我将重要的 AI 大模型资料,包括 AI 大模型入门学习思维导图、精品 AI 大模型学习书籍手册、视频教程以及实战学习等录播视频免费分享出来。
一、全套 AGI 大模型学习路线
AI 大模型时代的精彩学习之旅:从根基铸就到前沿探索,牢牢掌握人工智能核心技能!
二、640 套 AI 大模型报告合集
此套涵盖 640 份报告的精彩合集,全面涉及 AI 大模型的理论研究、技术实现以及行业应用等诸多方面。无论你是科研工作者、工程师,还是对 AI 大模型满怀热忱的爱好者,这套报告合集都将为你呈上宝贵的信息与深刻的启示。
三、AI 大模型经典 PDF 书籍
伴随人工智能技术的迅猛发展,AI 大模型已然成为当今科技领域的一大热点。这些大型预训练模型,诸如 GPT-3、BERT、XLNet 等,凭借其强大的语言理解与生成能力,正在重塑我们对人工智能的认知。而以下这些 PDF 书籍无疑是极为出色的学习资源。
阶段 1:AI 大模型时代的基础认知
-
目标:深入洞悉 AI 大模型的基本概念、发展历程以及核心原理。
-
内容
:
- L1.1 人工智能概述与大模型起源探寻。
- L1.2 大模型与通用人工智能的紧密关联。
- L1.3 GPT 模型的辉煌发展历程。
- L1.4 模型工程解析。
- L1.4.1 知识大模型阐释。
- L1.4.2 生产大模型剖析。
- L1.4.3 模型工程方法论阐述。
- L1.4.4 模型工程实践展示。
- L1.5 GPT 应用案例分享。
阶段 2:AI 大模型 API 应用开发工程
-
目标:熟练掌握 AI 大模型 API 的运用与开发,以及相关编程技能。
-
内容
:- L2.1 API 接口详解。
- L2.1.1 OpenAI API 接口解读。
- L2.1.2 Python 接口接入指南。
- L2.1.3 BOT 工具类框架介绍。
- L2.1.4 代码示例呈现。
- L2.2 Prompt 框架阐释。
- L2.2.1 何为 Prompt。
- L2.2.2 Prompt 框架应用现状分析。
- L2.2.3 基于 GPTAS 的 Prompt 框架剖析。
- L2.2.4 Prompt 框架与 Thought 的关联探讨。
- L2.2.5 Prompt 框架与提示词的深入解读。
- L2.3 流水线工程阐述。
- L2.3.1 流水线工程的概念解析。
- L2.3.2 流水线工程的优势展现。
- L2.3.3 流水线工程的应用场景探索。
- L2.4 总结与展望。
阶段 3:AI 大模型应用架构实践
-
目标:深刻理解 AI 大模型的应用架构,并能够实现私有化部署。
-
内容
:- L3.1 Agent 模型框架解读。
- L3.1.1 Agent 模型框架的设计理念阐述。
- L3.1.2 Agent 模型框架的核心组件剖析。
- L3.1.3 Agent 模型框架的实现细节展示。
- L3.2 MetaGPT 详解。
- L3.2.1 MetaGPT 的基本概念阐释。
- L3.2.2 MetaGPT 的工作原理剖析。
- L3.2.3 MetaGPT 的应用场景探讨。
- L3.3 ChatGLM 解析。
- L3.3.1 ChatGLM 的特色呈现。
- L3.3.2 ChatGLM 的开发环境介绍。
- L3.3.3 ChatGLM 的使用示例展示。
- L3.4 LLAMA 阐释。
- L3.4.1 LLAMA 的特点剖析。
- L3.4.2 LLAMA 的开发环境说明。
- L3.4.3 LLAMA 的使用示例呈现。
- L3.5 其他大模型介绍。
阶段 4:AI 大模型私有化部署
-
目标:熟练掌握多种 AI 大模型的私有化部署,包括多模态和特定领域模型。
-
内容
:- L4.1 模型私有化部署概述。
- L4.2 模型私有化部署的关键技术解析。
- L4.3 模型私有化部署的实施步骤详解。
- L4.4 模型私有化部署的应用场景探讨。
学习计划:
- 阶段 1:历时 1 至 2 个月,构建起 AI 大模型的基础知识体系。
- 阶段 2:花费 2 至 3 个月,专注于提升 API 应用开发能力。
- 阶段 3:用 3 至 4 个月,深入实践 AI 大模型的应用架构与私有化部署。
- 阶段 4:历经 4 至 5 个月,专注于高级模型的应用与部署。
相关文章:

大模型 LLM(Large Language Models)如今十分火爆,对于初入此领域的新人小白来说,应该如何入门 LLM 呢?是否有值得推荐的入门教程呢?
前言 很明显,这是一个偏学术方向的指南要求,所以我会把整个LLM应用的从数学到编程语言,从框架到常用模型的学习方法,给你捋一个通透。也可能是不爱学习的劝退文。 通常要达到熟练的进行LLM相关的学术研究与开发,至少…...

Python实现模糊逻辑算法
博客目录 引言 什么是模糊逻辑?模糊逻辑的应用场景模糊逻辑的基本思想 模糊逻辑的原理 模糊集合与隶属函数模糊推理系统(FIS)模糊规则和推理过程 Python实现模糊逻辑算法 面向对象的设计思路代码实现示例与解释 模糊逻辑算法应用实例&…...

MATLAB、FPGA、STM32中调用FFT计算频率、幅值及相位差
系列文章目录 文章目录 系列文章目录前言MATLABSTM32调用DSPSTM32中实现FFT关于初相位 FPGA 前言 最近在学习如何在STM32中调用FFT MATLAB 首先对FFT进行一下说明,我们输入N个点的数据到FFT中,FFT会返回N个点的数据,这些数据都是复数&#…...

基于SSM的医院药品库存系统的设计与实现---附源码76620
摘要 医院药品库存管理是医院管理的重要组成部分,对于保障医疗服务的质量和效率具有重要意义。传统的手工管理方式已经无法满足药品库存管理的需求,因此建立一个医院药品库存系统具有重要的实践价值。 使用Java语言开发医院药品库存系统可以兼容不同操作…...

Jupyter管理内核命令
1.显示有哪些内核 jupyter kernelspec list2.删除某个内核 jupyter kernelspec remove xxx3.添加某个内核 先激活环境 conda activate test_env然后安装ipykernel包 pip install ipykernel在虚拟环境中安装ipykernel包 python -m ipykernel install --name test_env安装过…...

简单分享-获取.txt文件内数据 文件内数据逗号分隔 分隔符 C语言
简单分享-获取.txt文件内数据 文件内数据逗号分隔 分隔符 C语言 数据存储到文件中,把文件数据读取到数组,方便数据处理。 # include <stdio.h> # include <stdlib.h> # include <string.h>#define DATANUM 307200 //数组个数 int ma…...

从0开始手把手带你入门Vue3
前言 本文并非标题党,而是实实在在的硬核文章,如果有想要学习Vue3的网友,可以大致的浏览一下本文,总体来说本篇博客涵盖了Vue3中绝大部分内容,包含常用的CompositionAPI(组合式API)、其它CompositionAPI以及一些新的特…...

C# USB通信技术(通过LibUsbDotNet库)
文章目录 1.下载LibusbDotNet库2.引入命名空间3. 实例化USB设备4.发送数据5.关闭连接 1.下载LibusbDotNet库 右击项目选择管理NuGet程序包在弹出的界面中搜索LibusbDotNet,然后下载安装。 2.引入命名空间 using LibUsbDotNet; using LibUsbDotNet.Main;3. 实例化…...

常用Java API
1 字符串处理 1.1 String 类 String 类是 Java 中不可变的字符序列。它提供了以下常用方法: length():返回字符串的长度。 charAt(index):返回指定索引处的字符。 substring(startIndex, endIndex):返回从 startIndex 到 endI…...

使用opencv优化图片(画面变清晰)
文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强…...

Java 回顾方法的定义
一、方法的定义 1.修饰符(public static…)详见博客【Java 方法的定义】 2.返回值(int, double, char[],…., void)详见博客【Java 方法的定义】 3. break:跳出switch 结束循环,详…...

网络安全产品认证证书大全(持续更新...)
文章目录 一、引言二、《计算机信息系统安全专用产品销售许可证》2.1 背景2.2 法律法规依据2.3 检测机构2.4 检测依据2.5 认证流程2.6 证书样本 三、《网络关键设备和网络安全专用产品安全认证证书》3.1 背景3.2 法律法规依据3.3 检测机构3.4安全认证和安全检测依据标准3.5 认证…...

win10 安装多个版本的python
1,安装python3.9 和python3.10 2, 安装完之后分别打开两个版本的Python的安装目录(第一层目录),把pythonw.exe分别重命名为pythonw_39.exe和pythonw_310.exe,把python.exe复制一份,并分别重命名为python_…...

【ORACLE】数据备份
Oracle数据库备份是确保数据安全和可靠性的重要环节。Oracle提供了多种备份方法,包括冷备份、热备份、逻辑备份(如使用expdp和impdp)以及使用RMAN(Recovery Manager)进行物理备份。 冷备份:在数据库关闭的状…...

[Golang] goroutine
[Golang] goroutine 文章目录 [Golang] goroutine并发进程和线程协程 goroutine概述如何使用goroutine 并发 进程和线程 谈到并发,大多都离不开进程和线程,什么是进程、什么是线程? 进程可以这样理解:进程就是运行着的程序&…...

【前端】JavaScript高级教程:函数高级——执行上下文与执行上下文栈
文章目录 遍历提升与函数提升执行上下文执行上下文栈(1)执行上下文栈(2)面试题 遍历提升与函数提升 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>01_变量提升与函数提升</title> </head&…...

【阻抗管传递函数法】频域声压,即复声压是指什么
在阻抗管传递函数法中提到的“频域声压数据”,是通过对传声器测得的“时域声压信号”进行快速傅里叶变换(FFT)后得到的结果。 具体来说,这些频域声压数据指的是传声器测量的声压随时间变化的数据,经过傅里叶变换后&am…...

Python青少年简明教程:类和对象入门
Python青少年简明教程:类和对象入门 Python支持多种编程范式(programming paradigms),即支持多种不同的编程风格和方法。初学者开始重点学习关注的编程范式,一般而言是面向过程编程和面向对象编程。面向过程编程&#…...

【vue+el-table】表格操作列宽度跟随按钮个数自适应, 方法封装全局使用
效果图 以上图片分别代表不同用户权限下所能看到的按钮个数, 操作列宽度也会自适应宽度, 就不会一直处于最大宽度, 导致其他权限用户看到的页面出现大量留白问题. 目录 解决方法解决过程中可能出现的问题width赋值时为什么不放update()中btnDom为什么不能直接调用forEach为…...

OpenAI发布全新o1 AI模型具备推理能力
🦉 AI新闻 🚀 OpenAI发布全新o1 AI模型具备推理能力 摘要:OpenAI推出新AI模型o1,具备推理能力,旨在比人类更快地解决复杂问题。o1与o1-mini版本同时发布,前者训练成本较高,但在编程和多步骤问…...

如何在本地部署大语言模型
近年来,随着大语言模型(如GPT、BERT等)的迅速发展,越来越多的开发者和研究人员希望在本地环境中部署这些强大的模型,以便用于特定的应用场景或进行个性化的研究。本文将详细介绍如何在本地部署大语言模型,涵…...

秒懂:环境变量
前言 1.Linux当中70%以上的命令程序都是用C语言写的 2.执行命令程序和运行自己写的程序没有任何区别 3.自己程序运行必须要带路径(绝对/相对都可) 4. 系统指令可带可不带(带不要瞎带) 变量具有全局特性是…...

使用 @Param 注解标注映射关系
目录 1. 场景描述 2. SQL语句 3. 方法定义 4. Param注解的使用 5. 总结 在开发过程中,我们经常需要在Java应用程序中执行数据库操作,尤其是更新操作。在Spring Data JPA框架中,我们可以使用原生SQL语句来执行这些操作,并通过…...

Java学习中在打印对象时忘记调用 .toString() 方法或者没有重写 toString() 方法怎么办?
在 Java 编程中,toString() 方法对于调试、日志记录以及打印对象信息至关重要。然而,许多初学者在打印对象时可能会忘记调用 .toString() 方法,或者在自定义类中没有重写 toString() 方法,这可能导致输出结果不符合预期。 一、Ja…...

如何评估一个RAG(检索增强生成)系统-上篇
最近项目中需要评估业务部门搭建的RAG助手的效果好坏,看了一下目前业界一些评测的方法。目前分为两大类,基于传统的规则、机器学习的评测方法,基于大模型的评测方法。在这里做一些记录,上篇主要做评测方法的记录,下篇会…...

rust解说
Rust 是一种开源的系统编程语言,由 Mozilla 研究院开发,旨在提供高性能、内存安全且并发性良好的编程体验。 Rust 于 2010 年由 Graydon Hoare 开始设计,并在 2015 年发布了第一个稳定版本。 Rust 的设计目标是解决 C 等传统系统编程语言在…...

Elasticsearch 开放 inference API 为 Hugging Face 添加了原生分块支持
作者:来自 Elastic Max Hniebergall 借助 Elasticsearch 开放推理 API,你可以使用 Hugging Face 的推理端点(Inference Endpoints)在 Elasticsearch 之外执行推理。这样你就可以使用 Hugging Face 的可扩展基础架构,包…...

Jenkins部署若依项目
一、配置环境 机器 jenkins机器 用途:自动化部署前端后端,前后端自动化构建需要配置发送SSH的秘钥和公钥,同时jenkins要有nodejs工具来进行前端打包,maven工具进行后端的打包。 gitlab机器 用途:远程代码仓库拉取和…...

ELK笔记
要搞成这样就需要钱来买服务器 开发人员一般不会给服务器权限,不能到服务器上直接看日志,所以通过ELK看日志。不让开发登录服务器。即使你查出来是开发的问题,费时间,而且影响了业务了,就是运维的问题 开发也不能登录…...

计算机网络 --- 计算机网络的分类
一、计算机网络分类 1.1 按分布范围分类 举例:广域网(WAN)、局域网(LAN) 举例:个域网(PAN) 1.2 按传输技术分类 广播式网络――当一台计算机发送数据分组时,广播范围…...