深入理解CASAtomic原子操作类详解
1.CAS介绍
什么是 CAS
CAS(Compare And Swap,比较与交换),是非阻塞同步的实现原理,它是CPU硬件层面的一种指令,从CPU层面能保证"比较与交换"两个操作的原子性。CAS指令操作包括三个参数:内存值(内存地址值)V、预期值E、新值N,当CAS指令执行时,当且仅当预期值E和内存值V相同时,才更新内存值为N,否则就不执行更新,无论更新与否都会返回否会返回旧的内存值V,上述的处理过程是一个原子操作。
用Java代码等效实现一下CAS的执行过程:
public class CASDemo {// 内存中当前的值private volatile int ramAddress;/*** @param expectedValue 期望值* @return newValue 更新的值**/public synchronized int compareAndSwap(int expectedValue, int newValue) {//TODO 模拟直接从内存地址读取到内存中的值int oldRamAddress = accessMemory(ramAddress);//内存中的值和期望的值进行比较if (oldRamAddress == expectedValue) {ramAddress = newValue;}return oldRamAddress;}private int accessMemory(int ramAddress) {//TODO 模拟直接从内存地址读取到内存中的值return ramAddress;}}
以上伪代码描述了一个由比较和赋值两阶段组成的复合操作,CAS 可以看作是它们合并后的整体——一个不可分割的原子操作,并且其原子性是直接在硬件层面得到保障的。
CAS是一种无锁算法,在不使用锁(没有线程被阻塞)的情况下实现多线程之间的变量同步。CAS可以看做是乐观锁(对比数据库的悲观、乐观锁)的一种实现方式,Java原子类中的递增操作就通过CAS自旋实现的。
CAS使用
在 Java 中,CAS 操作是由 Unsafe 类提供支持的,该类定义了三种针对不同类型变量的 CAS 操作,如图
它们都是 native 方法,由 Java 虚拟机提供具体实现,这意味着不同的 Java 虚拟机对它们的实现可能会略有不同。
Unsafe是位于sun.misc包下的一个类,主要提供一些用于执行低级别、不安全操作的方法,如直接访问系统内存资源、自主管理内存资源等,这些方法在提升Java运行效率、增强Java语言底层资源操作能力方面起到了很大的作用。但由于Unsafe类使Java语言拥有了类似C语言指针一样操作内存空间的能力,这无疑也增加了程序发生相关指针问题的风险。在程序中过度、不正确使用Unsafe类会使得程序出错的概率变大,使得Java这种安全的语言变得不再“安全”,因此对Unsafe的使用一定要慎重。
以 compareAndSwapInt 为例,Unsafe 的 compareAndSwapInt 方法接收 4 个参数,分别是:对象实例、内存偏移量、字段期望值、字段新值。该方法会针对指定对象实例中的相应偏移量的字段执行 CAS 操作。
public class CASTest {public static void main(String[] args) {Entity entity = new Entity();Unsafe unsafe = UnsafeFactory.getUnsafe();long offset = UnsafeFactory.getFieldOffset(unsafe, Entity.class, "x");boolean successful;// 4个参数分别是:对象实例、字段的内存偏移量、字段期望值、字段新值successful = unsafe.compareAndSwapInt(entity, offset, 0, 3);System.out.println(successful + "\t" + entity.x);successful = unsafe.compareAndSwapInt(entity, offset, 3, 5);System.out.println(successful + "\t" + entity.x);successful = unsafe.compareAndSwapInt(entity, offset, 3, 8);System.out.println(successful + "\t" + entity.x);}
}public class UnsafeFactory {/*** 获取 Unsafe 对象* @return*/public static Unsafe getUnsafe() {try {Field field = Unsafe.class.getDeclaredField("theUnsafe");field.setAccessible(true);return (Unsafe) field.get(null);} catch (Exception e) {e.printStackTrace();}return null;}/*** 获取字段的内存偏移量* @param unsafe* @param clazz* @param fieldName* @return*/public static long getFieldOffset(Unsafe unsafe, Class clazz, String fieldName) {try {return unsafe.objectFieldOffset(clazz.getDeclaredField(fieldName));} catch (NoSuchFieldException e) {throw new Error(e);}}
}
测试
针对 entity.x 的 3 次 CAS 操作,分别试图将它从 0 改成 3、从 3 改成 5、从 3 改成 8。执行结果如下:
CAS应用场景
CAS在java.util.concurrent.atomic相关类、Java AQS、CurrentHashMap等实现上有非常广泛的应用。如下图所示,AtomicInteger的实现中,静态字段valueOffset即为字段value的内存偏移地址,valueOffset的值在AtomicInteger初始化时,在静态代码块中通过Unsafe的objectFieldOffset方法获取。在AtomicInteger中提供的线程安全方法中,通过字段valueOffset的值可以定位到AtomicInteger对象中value的内存地址,从而可以根据CAS实现对value字段的原子操作。
下图为某个AtomicInteger对象自增操作前后的内存示意图,对象的基地址baseAddress=“0x110000”,通过baseAddress+valueOffset得到value的内存地址valueAddress=“0x11000c”;然后通过CAS进行原子性的更新操作,成功则返回,否则继续重试,直到更新成功为止。
CAS源码分析
Hotspot 虚拟机对compareAndSwapInt 方法的实现如下:
#unsafe.cpp
UNSAFE_ENTRY(jboolean, Unsafe_CompareAndSwapInt(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jint e, jint x))UnsafeWrapper("Unsafe_CompareAndSwapInt");oop p = JNIHandles::resolve(obj);// 根据偏移量,计算value的地址jint* addr = (jint *) index_oop_from_field_offset_long(p, offset);// Atomic::cmpxchg(x, addr, e) cas逻辑 x:要交换的值 e:要比较的值//cas成功,返回期望值e,等于e,此方法返回true //cas失败,返回内存中的value值,不等于e,此方法返回falsereturn (jint)(Atomic::cmpxchg(x, addr, e)) == e;
UNSAFE_END2
核心逻辑在Atomic::cmpxchg方法中,这个根据不同操作系统和不同CPU会有不同的实现。这里我们以linux_64x的为例,查看Atomic::cmpxchg的实现
#atomic_linux_x86.inline.hpp
inline jint Atomic::cmpxchg (jint exchange_value, volatile jint* dest, jint compare_value) {//判断当前执行环境是否为多处理器环境int mp = os::is_MP();//LOCK_IF_MP(%4) 在多处理器环境下,为 cmpxchgl 指令添加 lock 前缀,以达到内存屏障的效果//cmpxchgl 指令是包含在 x86 架构及 IA-64 架构中的一个原子条件指令,//它会首先比较 dest 指针指向的内存值是否和 compare_value 的值相等,//如果相等,则双向交换 dest 与 exchange_value,否则就单方面地将 dest 指向的内存值交给exchange_value。//这条指令完成了整个 CAS 操作,因此它也被称为 CAS 指令。__asm__ volatile (LOCK_IF_MP(%4) "cmpxchgl %1,(%3)": "=a" (exchange_value): "r" (exchange_value), "a" (compare_value), "r" (dest), "r" (mp): "cc", "memory");return exchange_value;
}
cmpxchgl的详细执行过程:
首先,输入是"r" (exchange_value), “a” (compare_value), “r” (dest), “r” (mp),表示compare_value存入eax寄存器,而exchange_value、dest、mp的值存入任意的通用寄存器。嵌入式汇编规定把输出和输入寄存器按统一顺序编号,顺序是从输出寄存器序列从左到右从上到下以“%0”开始,分别记为%0、%1···%9。也就是说,输出的eax是%0,输入的exchange_value、compare_value、dest、mp分别是%1、%2、%3、%4。
因此,cmpxchg %1,(%3)实际上表示cmpxchg exchange_value,(dest)
需要注意的是cmpxchg有个隐含操作数eax,其实际过程是先比较eax的值(也就是compare_value)和dest地址所存的值是否相等,
输出是"=a" (exchange_value),表示把eax中存的值写入exchange_value变量中。
Atomic::cmpxchg这个函数最终返回值是exchange_value,也就是说,如果cmpxchgl执行时compare_value和dest指针指向内存值相等则会使得dest指针指向内存值变成exchange_value,最终eax存的compare_value赋值给了exchange_value变量,即函数最终返回的值是原先的compare_value。此时Unsafe_CompareAndSwapInt的返回值(jint)(Atomic::cmpxchg(x, addr, e)) == e就是true,表明CAS成功。如果cmpxchgl执行时compare_value和(dest)不等则会把当前dest指针指向内存的值写入eax,最终输出时赋值给exchange_value变量作为返回值,导致(jint)(Atomic::cmpxchg(x, addr, e)) == e得到false,表明CAS失败。
现代处理器指令集架构基本上都会提供 CAS 指令,例如 x86 和 IA-64 架构中的 cmpxchgl 指令和 comxchgq 指令,sparc 架构中的 cas 指令和 casx 指令。
不管是 Hotspot 中的 Atomic::cmpxchg 方法,还是 Java 中的 compareAndSwapInt 方法,它们本质上都是对相应平台的 CAS 指令的一层简单封装。CAS 指令作为一种硬件原语,有着天然的原子性,这也正是 CAS 的价值所在。
CAS缺陷
CAS 虽然高效地解决了原子操作,但是还是存在一些缺陷的,主要表现在三个方面:
- 自旋 CAS 长时间不成功,则会给 CPU 带来非常大的开销
- 只能保证一个共享变量原子操作
- ABA 问题
ABA问题及其解决方案
CAS算法实现一个重要前提需要取出内存中某时刻的数据,而在下时刻比较并替换,那么在这个时间差类会导致数据的变化。
什么是ABA问题
当有多个线程对一个原子类进行操作的时候,某个线程在短时间内将原子类的值A修改为B,又马上将其修改为A,此时其他线程不感知,还是会修改成功。
测试
@Slf4j
public class ABATest {public static void main(String[] args) {AtomicInteger atomicInteger = new AtomicInteger(1);new Thread(()->{int value = atomicInteger.get();log.debug("Thread1 read value: " + value);// 阻塞1sLockSupport.parkNanos(1000000000L);// Thread1通过CAS修改value值为3if (atomicInteger.compareAndSet(value, 3)) {log.debug("Thread1 update from " + value + " to 3");} else {log.debug("Thread1 update fail!");}},"Thread1").start();new Thread(()->{int value = atomicInteger.get();log.debug("Thread2 read value: " + value);// Thread2通过CAS修改value值为2if (atomicInteger.compareAndSet(value, 2)) {log.debug("Thread2 update from " + value + " to 2");// do somethingvalue = atomicInteger.get();log.debug("Thread2 read value: " + value);// Thread2通过CAS修改value值为1if (atomicInteger.compareAndSet(value, 1)) {log.debug("Thread2 update from " + value + " to 1");}}},"Thread2").start();}
}
Thread1不清楚Thread2对value的操作,误以为value=1没有修改过
ABA问题的解决方案
数据库有个锁称为乐观锁,是一种基于数据版本实现数据同步的机制,每次修改一次数据,版本就会进行累加。
同样,Java也提供了相应的原子引用类AtomicStampedReference
reference即我们实际存储的变量,stamp是版本,每次修改可以通过+1保证版本唯一性。这样就可以保证每次修改后的版本也会往上递增。
@Slf4j
public class AtomicStampedReferenceTest {public static void main(String[] args) {// 定义AtomicStampedReference Pair.reference值为1, Pair.stamp为1AtomicStampedReference atomicStampedReference = new AtomicStampedReference(1,1);new Thread(()->{int[] stampHolder = new int[1];int value = (int) atomicStampedReference.get(stampHolder);int stamp = stampHolder[0];log.debug("Thread1 read value: " + value + ", stamp: " + stamp);// 阻塞1sLockSupport.parkNanos(1000000000L);// Thread1通过CAS修改value值为3if (atomicStampedReference.compareAndSet(value, 3,stamp,stamp+1)) {log.debug("Thread1 update from " + value + " to 3");} else {log.debug("Thread1 update fail!");}},"Thread1").start();new Thread(()->{int[] stampHolder = new int[1];int value = (int)atomicStampedReference.get(stampHolder);int stamp = stampHolder[0];log.debug("Thread2 read value: " + value+ ", stamp: " + stamp);// Thread2通过CAS修改value值为2if (atomicStampedReference.compareAndSet(value, 2,stamp,stamp+1)) {log.debug("Thread2 update from " + value + " to 2");// do somethingvalue = (int) atomicStampedReference.get(stampHolder);stamp = stampHolder[0];log.debug("Thread2 read value: " + value+ ", stamp: " + stamp);// Thread2通过CAS修改value值为1if (atomicStampedReference.compareAndSet(value, 1,stamp,stamp+1)) {log.debug("Thread2 update from " + value + " to 1");}}},"Thread2").start();}
}
Thread1并没有成功修改value
补充:AtomicMarkableReference可以理解为上面AtomicStampedReference的简化版,就是不关心修改过几次,仅仅关心是否修改过。因此变量mark是boolean类型,仅记录值是否有过修改。
2.Atomic原子操作类介绍
在并发编程中很容易出现并发安全的问题,有一个很简单的例子就是多线程更新变量i=1,比如多个线程执行i++操作,就有可能获取不到正确的值,而这个问题,最常用的方法是通过Synchronized进行控制来达到线程安全的目的。但是由于synchronized是采用的是悲观锁策略,并不是特别高效的一种解决方案。实际上,在J.U.C下的atomic包提供了一系列的操作简单,性能高效,并能保证线程安全的类去更新基本类型变量,数组元素,引用类型以及更新对象中的字段类型。atomic包下的这些类都是采用的是乐观锁策略去原子更新数据,在java中则是使用CAS操作具体实现。
在java.util.concurrent.atomic包里提供了一组原子操作类:
基本类型:AtomicInteger、AtomicLong、AtomicBoolean;
引用类型:AtomicReference、AtomicStampedRerence、AtomicMarkableReference;
数组类型:AtomicIntegerArray、AtomicLongArray、AtomicReferenceArray
对象属性原子修改器:AtomicIntegerFieldUpdater、AtomicLongFieldUpdater、AtomicReferenceFieldUpdater
原子类型累加器(jdk1.8增加的类):DoubleAccumulator、DoubleAdder、LongAccumulator、LongAdder、Striped64
原子更新基本类型
以AtomicInteger为例总结常用的方法
//以原子的方式将实例中的原值加1,返回的是自增前的旧值;
public final int getAndIncrement() {return unsafe.getAndAddInt(this, valueOffset, 1);
}//getAndSet(int newValue):将实例中的值更新为新值,并返回旧值;
public final boolean getAndSet(boolean newValue) {boolean prev;do {prev = get();} while (!compareAndSet(prev, newValue));return prev;
}//incrementAndGet() :以原子的方式将实例中的原值进行加1操作,并返回最终相加后的结果;
public final int incrementAndGet() {return unsafe.getAndAddInt(this, valueOffset, 1) + 1;
}//addAndGet(int delta) :以原子方式将输入的数值与实例中原本的值相加,并返回最后的结果;
public final int addAndGet(int delta) {return unsafe.getAndAddInt(this, valueOffset, delta) + delta;
测试
public class AtomicIntegerTest {static AtomicInteger sum = new AtomicInteger(0);public static void main(String[] args) {for (int i = 0; i < 10; i++) {Thread thread = new Thread(() -> {for (int j = 0; j < 10000; j++) {// 原子自增 CASsum.incrementAndGet();//TODO}});thread.start();}try {Thread.sleep(3000);} catch (InterruptedException e) {e.printStackTrace();}System.out.println(sum.get());}}
incrementAndGet()方法通过CAS自增实现,如果CAS失败,自旋直到成功+1。
思考:这种CAS失败自旋的操作存在什么问题?
原子更新数组类型
AtomicIntegerArray为例总结常用的方法
//addAndGet(int i, int delta):以原子更新的方式将数组中索引为i的元素与输入值相加;
public final int addAndGet(int i, int delta) {return getAndAdd(i, delta) + delta;
}//getAndIncrement(int i):以原子更新的方式将数组中索引为i的元素自增加1;
public final int getAndIncrement(int i) {return getAndAdd(i, 1);
}//compareAndSet(int i, int expect, int update):将数组中索引为i的位置的元素进行更新
public final boolean compareAndSet(int i, int expect, int update) {return compareAndSetRaw(checkedByteOffset(i), expect, update);
}
测试
public class AtomicIntegerArrayTest {static int[] value = new int[]{ 1, 2, 3, 4, 5 };static AtomicIntegerArray atomicIntegerArray = new AtomicIntegerArray(value);public static void main(String[] args) throws InterruptedException {//设置索引0的元素为100atomicIntegerArray.set(0, 100);System.out.println(atomicIntegerArray.get(0));//以原子更新的方式将数组中索引为1的元素与输入值相加atomicIntegerArray.getAndAdd(1,5);System.out.println(atomicIntegerArray);}
}
原子更新引用类型
AtomicReference作用是对普通对象的封装,它可以保证你在修改对象引用时的线程安全性。
public class AtomicReferenceTest {public static void main( String[] args ) {User user1 = new User("张三", 23);User user2 = new User("李四", 25);User user3 = new User("王五", 20);//初始化为 user1AtomicReference<User> atomicReference = new AtomicReference<>();atomicReference.set(user1);//把 user2 赋给 atomicReferenceatomicReference.compareAndSet(user1, user2);System.out.println(atomicReference.get());//把 user3 赋给 atomicReferenceatomicReference.compareAndSet(user1, user3);System.out.println(atomicReference.get());}}@Data
@AllArgsConstructor
class User {private String name;private Integer age;
}
对象属性原子修改器
AtomicIntegerFieldUpdater可以线程安全地更新对象中的整型变量。
public class AtomicIntegerFieldUpdaterTest {public static class Candidate {volatile int score = 0;AtomicInteger score2 = new AtomicInteger();}public static final AtomicIntegerFieldUpdater<Candidate> scoreUpdater =AtomicIntegerFieldUpdater.newUpdater(Candidate.class, "score");public static AtomicInteger realScore = new AtomicInteger(0);public static void main(String[] args) throws InterruptedException {final Candidate candidate = new Candidate();Thread[] t = new Thread[10000];for (int i = 0; i < 10000; i++) {t[i] = new Thread(new Runnable() {@Overridepublic void run() {if (Math.random() > 0.4) {candidate.score2.incrementAndGet();scoreUpdater.incrementAndGet(candidate);realScore.incrementAndGet();}}});t[i].start();}for (int i = 0; i < 10000; i++) {t[i].join();}System.out.println("AtomicIntegerFieldUpdater Score=" + candidate.score);System.out.println("AtomicInteger Score=" + candidate.score2.get());System.out.println("realScore=" + realScore.get());}
}
对于AtomicIntegerFieldUpdater 的使用稍微有一些限制和约束,约束如下:
(1)字段必须是volatile类型的,在线程之间共享变量时保证立即可见.eg:volatile int value = 3
(2)字段的描述类型(修饰符public/protected/default/private)与调用者与操作对象字段的关系一致。也就是说调用者能够直接操作对象字段,那么就可以反射进行原子操作。但是对于父类的字段,子类是不能直接操作的,尽管子类可以访问父类的字段。
(3)只能是实例变量,不能是类变量,也就是说不能加static关键字。
(4)只能是可修改变量,不能使final变量,因为final的语义就是不可修改。实际上final的语义和volatile是有冲突的,这两个关键字不能同时存在。
(5)对于AtomicIntegerFieldUpdater和AtomicLongFieldUpdater只能修改int/long类型的字段,不能修改其包装类型(Integer/Long)。如果要修改包装类型就需要使用AtomicReferenceFieldUpdater。
LongAdder/DoubleAdder详解
AtomicLong是利用了底层的CAS操作来提供并发性的,比如addAndGet方法:
上述方法调用了Unsafe类的getAndAddLong方法,该方法内部是个native方法,它的逻辑是采用自旋的方式不断更新目标值,直到更新成功。
在并发量较低的环境下,线程冲突的概率比较小,自旋的次数不会很多。但是,高并发环境下,N个线程同时进行自旋操作,会出现大量失败并不断自旋的情况,此时AtomicLong的自旋会成为瓶颈。
这就是LongAdder引入的初衷——解决高并发环境下AtomicInteger,AtomicLong的自旋瓶颈问题。
性能测试
public class LongAdderTest {public static void main(String[] args) {testAtomicLongVSLongAdder(10, 10000);System.out.println("==================");testAtomicLongVSLongAdder(10, 200000);System.out.println("==================");testAtomicLongVSLongAdder(100, 200000);}static void testAtomicLongVSLongAdder(final int threadCount, final int times) {try {long start = System.currentTimeMillis();testLongAdder(threadCount, times);long end = System.currentTimeMillis() - start;System.out.println("条件>>>>>>线程数:" + threadCount + ", 单线程操作计数" + times);System.out.println("结果>>>>>>LongAdder方式增加计数" + (threadCount * times) + "次,共计耗时:" + end);long start2 = System.currentTimeMillis();testAtomicLong(threadCount, times);long end2 = System.currentTimeMillis() - start2;System.out.println("条件>>>>>>线程数:" + threadCount + ", 单线程操作计数" + times);System.out.println("结果>>>>>>AtomicLong方式增加计数" + (threadCount * times) + "次,共计耗时:" + end2);} catch (InterruptedException e) {e.printStackTrace();}}static void testAtomicLong(final int threadCount, final int times) throws InterruptedException {CountDownLatch countDownLatch = new CountDownLatch(threadCount);AtomicLong atomicLong = new AtomicLong();for (int i = 0; i < threadCount; i++) {new Thread(new Runnable() {@Overridepublic void run() {for (int j = 0; j < times; j++) {atomicLong.incrementAndGet();}countDownLatch.countDown();}}, "my-thread" + i).start();}countDownLatch.await();}static void testLongAdder(final int threadCount, final int times) throws InterruptedException {CountDownLatch countDownLatch = new CountDownLatch(threadCount);LongAdder longAdder = new LongAdder();for (int i = 0; i < threadCount; i++) {new Thread(new Runnable() {@Overridepublic void run() {for (int j = 0; j < times; j++) {longAdder.add(1);}countDownLatch.countDown();}}, "my-thread" + i).start();}countDownLatch.await();}
}
测试结果:线程数越多,并发操作数越大,LongAdder的优势越明显
低并发、一般的业务场景下AtomicLong是足够了。如果并发量很多,存在大量写多读少的情况,那LongAdder可能更合适。
LongAdder原理
设计思路
AtomicLong中有个内部变量value保存着实际的long值,所有的操作都是针对该变量进行。也就是说,高并发环境下,value变量其实是一个热点,也就是N个线程竞争一个热点。LongAdder的基本思路就是分散热点,将value值分散到一个数组中,不同线程会命中到数组的不同槽中,各个线程只对自己槽中的那个值进行CAS操作,这样热点就被分散了,冲突的概率就小很多。如果要获取真正的long值,只要将各个槽中的变量值累加返回。
LongAdder的内部结构
LongAdder内部有一个base变量,一个Cell[]数组:
base变量:非竞态条件下,直接累加到该变量上
Cell[]数组:竞态条件下,累加个各个线程自己的槽Cell[i]中
/** Number of CPUS, to place bound on table size */
// CPU核数,用来决定槽数组的大小
static final int NCPU = Runtime.getRuntime().availableProcessors();/*** Table of cells. When non-null, size is a power of 2.*/// 数组槽,大小为2的次幂
transient volatile Cell[] cells;/*** Base value, used mainly when there is no contention, but also as* a fallback during table initialization races. Updated via CAS.*//*** 基数,在两种情况下会使用:* 1. 没有遇到并发竞争时,直接使用base累加数值* 2. 初始化cells数组时,必须要保证cells数组只能被初始化一次(即只有一个线程能对cells初始化),* 其他竞争失败的线程会将数值累加到base上*/
transient volatile long base;/*** Spinlock (locked via CAS) used when resizing and/or creating Cells.*/
transient volatile int cellsBusy;
定义了一个内部Cell类,这就是我们之前所说的槽,每个Cell对象存有一个value值,可以通过Unsafe来CAS操作它的值:
LongAdder#add方法
LongAdder#add方法的逻辑如下图:
只有从未出现过并发冲突的时候,base基数才会使用到,一旦出现了并发冲突,之后所有的操作都只针对Cell[]数组中的单元Cell。
如果Cell[]数组未初始化,会调用父类的longAccumelate去初始化Cell[],如果Cell[]已经初始化但是冲突发生在Cell单元内,则也调用父类的longAccumelate,此时可能就需要对Cell[]扩容了。
这也是LongAdder设计的精妙之处:尽量减少热点冲突,不到最后万不得已,尽量将CAS操作延迟。
Striped64#longAccumulate方法
整个Striped64#longAccumulate的流程图如下:
LongAdder#sum方法
/**
* 返回累加的和,也就是"当前时刻"的计数值
* 注意: 高并发时,除非全局加锁,否则得不到程序运行中某个时刻绝对准确的值
* 此返回值可能不是绝对准确的,因为调用这个方法时还有其他线程可能正在进行计数累加,
* 方法的返回时刻和调用时刻不是同一个点,在有并发的情况下,这个值只是近似准确的计数值
*/
public long sum() {Cell[] as = cells; Cell a;long sum = base;if (as != null) {for (int i = 0; i < as.length; ++i) {if ((a = as[i]) != null)sum += a.value;}}return sum;
}
由于计算总和时没有对Cell数组进行加锁,所以在累加过程中可能有其他线程对Cell中的值进行了修改,也有可能对数组进行了扩容,所以sum返回的值并不是非常精确的,其返回值并不是一个调用sum方法时的原子快照值。
相关文章:

深入理解CASAtomic原子操作类详解
1.CAS介绍 什么是 CAS CAS(Compare And Swap,比较与交换),是非阻塞同步的实现原理,它是CPU硬件层面的一种指令,从CPU层面能保证"比较与交换"两个操作的原子性。CAS指令操作包括三个参数&#x…...

C51单片机-单按键输入识别,键盘消抖
【实验目的】 独立按键的识别方法、键盘消抖等。 【实验现象】 每按一次独立键盘的S2键,与P1口相连的八个发光二极管中点亮的一个往下移动一位。 【实验说明】 关于按键去抖动的解释,我们在手动按键的时候,由于机械抖动或是其它一些非人为的因…...

基于CNN卷积神经网络迁移学习的图像识别实现
基于CNN卷积神经网络迁移学习的图像识别实现 基于CNN卷积神经网络迁移学习的图像识别实现写在前面一,原理介绍迁移学习的基本方法1.样本迁移(Instance based TL)2.特征迁移(Feature based TL)3.模型迁移(Pa…...

【iOS】push和present的区别
【iOS】push和present的区别 文章目录 【iOS】push和present的区别前言pushpop presentdismiss简单小demo来展示dismiss和presentdismiss多级 push和present的区别区别相同点 前言 在iOS开发中,我们经常性的会用到界面的一个切换的问题,这里我们需要理清…...

在Linux服务器上添加用户并设置自动登录
需要在Linux服务器上添加一个新用户,可以使用以下命令 # 这个命令会创建一个新的用户账户,默认情况下不会设置密码,不会在 /home 目录下为新用户创建home目录: # sudo useradd 用户名 # # 如果希望同时为新用户创建家目录&#…...

网站被爬,数据泄露,如何应对不断强化的安全危机?
近年来,众多传统零售商和互联网企业借助大数据、人工智能等先进技术手段,通过场景化设计、优化客户体验、融合线上线下渠道,推动了网络电商行业的消费方式变革,成为电商领域新的增长动力。 但值得注意的是,网络电商带来…...

为什么HTTPS会引入SSL/TLS协议
这时我面试遇到过的问题,整理了一下,希望对大家有帮助! 祝大家秋招顺利! 首先 SSL/TLS 协议通过使用数字证书来实现服务器身份认证, 当用户访问一个 HTTPS 网站时,浏览器会验证服务器的数字证书, 1.首先他对验证整证书是否在有效期 2.其次他会看证书中的服务器域名…...

Spring AOP,通知使用,spring事务管理,spring_web搭建
spring AOP AOP概述 AOP面向切面编程是对面向对象编程的延续(AOP (Aspect Orient Programming),直译过来就是 面向切面编程,AOP 是一种编程思想,是面向对象编程(OOP)的一种补充。) 面向切面编…...

PHP无缝对接预订无忧场馆预订系统小程序源码
无缝对接,预订无忧 —— 场馆预订系统,让每一次活动都完美启航! 一、告别繁琐流程,预订从未如此简单 你是否曾经为了预订一个合适的场馆而焦头烂额?繁琐的咨询、确认、支付流程,让人心力交瘁。但现在&…...

Unet改进30:添加CAA(2024最新改进方法)|上下文锚定注意模块来捕获远程上下文信息。
本文内容:在不同位置添加CAA注意力机制 目录 论文简介 1.步骤一 2.步骤二 3.步骤三 4.步骤四 论文简介 遥感图像中的目标检测经常面临一些日益严峻的挑战,包括目标尺度的巨大变化和不同的测距环境。先前的方法试图通过大核卷积或扩展卷积来扩展主干的空间感受野来解决这…...

OpenAI震撼发布最强模型o1!强化学习突破LLM推理极限
OpenAI新模型无预警上新: o1系列,可以进行通用复杂推理,每次回答要花费更长时间思考。 在解决博士水平的物理问题时,GPT-4o还是“不及格”59.5分,o1一跃来到“优秀档”,直接干到92.8分! 没错…...

速通GPT-2:Language Models are Unsupervised Multitask Learners全文解读
文章目录 GPT系列论文速通引言总览GPT和GPT-2区别Abstract1. 概括2. 具体分析 Introduction1. 概括2. 具体分析当前机器学习系统的局限性希望构建通用型系统数据集与任务通用性缺乏的原因 Approach1. 概括与要点2. 原文阅读翻译3. 具体分析论文核心Training DatasetInput Repre…...

Python 最小公倍数计算器:从基础到应用
目录 引言数学背景 什么是最小公倍数(LCM)计算LCM的方法Python基础 Python简介Python安装和设置使用Python计算最小公倍数 理论基础Python实现详细代码解析 辅助函数LCM计算函数最小公倍数的应用 工作中的应用场景日常生活中的应用场景优化与扩展 代码优化处理多个数字进阶话…...

网络学习-eNSP配置路由器
#PC1网关:192.168.1.254 #PC3网关:192.168.3.254 #PC4网关:192.168.4.254# 注:路由器接口必须配置不同网段IP地址 <Huawei>system-view Enter system view, return user view with CtrlZ. #给路由器两个接口配置IP地址 [Hua…...

在 React 中,如何使用 Context API 来实现跨组件的通信?
在 React 中,Context API 提供了一种方式,允许你在组件树中传递数据,而无需在每个层级手动传递 props。这对于实现跨组件通信非常有用,特别是当你需要在多个组件间共享状态或函数时。 以下是如何使用 Context API 来实现跨组件通…...

【基础算法总结】位运算
目录 一,常见位运算操作总结二,算法原理和代码实现191.位1的个数338.比特位计数461.汉明距离面试题01.01.判断字符是否唯一268.丢失的数字371.两整数之和136.只出现一次的数字137.只出现一次的数字II260.只出现一次的数据III面试题17.19.消失的两个数字 …...

组件通信——provide 和 inject 实现爷孙组件通信
provide 和 inject 实现爷孙组件通信 介绍 provide 和 inject 是 Vue.js 提供的一种在组件之间共享数据的机制,它允许在组件树中的任何地方注入依赖项。这对于跨越多个层级的组件间通信特别有用,因此无需手动将 prop 数据逐层传递下去。 provide&#…...

【ShuQiHere】探索人工智能核心:机器学习的奥秘
【ShuQiHere】 💡 什么是机器学习? 机器学习(Machine Learning, ML)是人工智能(Artificial Intelligence, AI)中最关键的组成部分之一。它使得计算机不仅能够处理数据,还能从数据中学习&#x…...

LeeCode打卡第二十四天
LeeCode打卡第二十四天 第一题:对称二叉树(LeeCode第101题): 给你一个二叉树的根节点 root , 检查它是否轴对称。 /*** Definition for a binary tree node.* public class TreeNode {* int val;* TreeNode left;* …...

什么是科技与艺术相结合的异形创意圆形(饼/盘)LED显示屏
在当今数字化与创意并重的时代,科技与艺术的融合已成为推动社会进步与文化创新的重要力量。其中,晶锐创显异形创意圆形LED显示屏作为这一趋势下的杰出代表,不仅打破了传统显示设备的形态束缚,更以其独特的造型、卓越的显示效果和广…...

AI大模型知识点大梳理_ai大模型知识学习,零基础入门到精通,收藏这一篇就够了
文章目录 AI大模型是什么AI大模型发展历程AI大模型的底层原理AI大模型解决的问题大模型的优点和不足影响个人观点 AI大模型是什么 AI大模型是指具有巨大参数量的深度学习模型,通常包含数十亿甚至数万亿个参数。这些模型可以通过学习大量的数据来提高预测能力&…...

NVG040W语音芯片:为制氧机带来个性化语音提示和报警功能
在当今社会,家庭医疗设备和健康保健产品越来越受到人们的关注。制氧机作为其中的一种,为许多需要氧气治疗的人们提供了重要的帮助。然而,对于许多用户来说,如何正确操作和维护这些设备仍然是一个挑战。为此,NVG040W语音…...

OpenCV结构分析与形状描述符(12)椭圆拟合函数fitEllipseAMS()的使用
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 围绕一组2D点拟合一个椭圆。 该函数计算出一个椭圆,该椭圆拟合一组2D点。它返回一个内切于该椭圆的旋转矩形。使用了由[260]提出的近…...

安卓显示驱动
安卓显示驱动是用于在Android设备上提供图形和视频显示的底层软件组件。 显示驱动在Android系统中扮演着至关重要的角色,它们负责将图形和视频内容从系统内存传输到显示屏上。这些驱动程序确保了用户界面、图像、视频和游戏等视觉元素的正常显示。以下是关于安卓显…...

java重点学习-集合(List)
七 集合(List) 7.1 复杂度分析 7.2 数组 1.数组(Array)是一种用连续的内存空间存储相同数据类型 数据的线性数据结构。 2.数组下标为什么从0开始 寻址公式是:baseAddressi*dataTypeSize,计算下标的内存地址效率较高 3.查找的时间复杂度 随机(…...

【PCB测试】最常见的PCB测试方法
系列文章目录 1.元件基础 2.电路设计 3.PCB设计 4.元件焊接 5.板子调试 6.程序设计 7.算法学习 8.编写exe 9.检测标准 10.项目举例 11.职业规划 文章目录 一、PCB测试的好处1.发现错误2.降低成本3.节省时间4.减少退货率5.提高安全性 二、PCB测试内容1.孔壁质量2.电镀铜3.清…...

AtCoder Beginner Contest 370 ABCD题详细题解(C++,Python)
前言: 本文为AtCoder Beginner Contest 370 ABCD题的详细题解,包含C,Python语言描述,觉得有帮助或者写的不错可以点个赞 个人感觉D比C简单,C那里的字典序有点不理解, E应该是前缀和加dp,但是是dp不明白,等我明白了会更…...

斯坦福研究人员探讨大型语言模型在社交网络生成中的应用及其在政治同质性上的偏见
社交网络生成在许多领域有着广泛的应用,比如流行病建模、社交媒体模拟以及理解社交现象如两极化等。当由于隐私问题或其他限制无法直接观察真实网络时,创建逼真的社交网络就显得尤为重要。这些生成的网络对于在这些情况下准确建模互动和预测结果至关重要…...

一招教你找到Facebook广告的最佳发帖时间
在社交媒体上做广告时,时机是至关重要的。有时候你投放的广告参与度低,很有可能是因为你没有在适当的时机投放广告。这篇文章会教你如何找到适合自己的广告投放时间,如果你感兴趣的话,就继续看下去吧! 首先࿰…...

【数据库】MySQL-基础篇-多表查询
专栏文章索引:数据库 有问题可私聊:QQ:3375119339 目录 一、多表关系 1.一对多 2.多对多 3.一对一 二、多表查询概述 1.数据准备 2.概述 3.分类 三、内连接 1.隐式内连接 2.显式内连接 3.案例 四、外连接 1.左外连接 2.右外连…...