【ShuQiHere】探索人工智能核心:机器学习的奥秘
【ShuQiHere】
💡 什么是机器学习?
机器学习(Machine Learning, ML)是人工智能(Artificial Intelligence, AI)中最关键的组成部分之一。它使得计算机不仅能够处理数据,还能从数据中学习,从而做出预测和决策。无论是语音识别、自动驾驶还是推荐系统,背后都依赖于机器学习模型。机器学习与传统的编程不同,它不再依赖于人类编写的固定规则,而是通过数据自我改进模型,从而更灵活地解决问题。
本文将逐步解析机器学习的核心概念,探讨三种主要的学习方法:监督学习(Supervised Learning)、无监督学习(Unsupervised Learning)和强化学习(Reinforcement Learning),并分析与人类大脑结构相似的人工神经网络(Artificial Neural Networks, ANN)如何推动了AI的发展。
1. 冯·诺依曼机器:传统计算机的局限
🖥️ 冯·诺依曼结构(von Neumann Architecture)是现代计算机的基础架构。由约翰·冯·诺依曼(John von Neumann)在1945年提出,它奠定了计算机设计的基本原则,并构成了现代计算机的运行模式。这个架构包含三个核心组件:
- 中央处理器(Central Processing Unit, CPU):计算机的“大脑”,负责处理数据和执行指令。
- 存储器(Memory Unit):保存程序和数据的地方。
- 输入输出单元(Input/Output Unit, I/O):用于数据的输入与输出,如键盘输入或屏幕显示。
尽管现代计算机越来越强大,但其基本原理仍然遵循这一架构。然而,这种架构存在一个显著缺陷:它不能自主学习。计算机只能按照预设的程序执行任务,无法从过去的经验中改进。这就是为什么我们无法称其为“智能”系统。
例子:天气预报系统 🌦️
一个典型的例子是7天天气预报系统。这种系统基于气象观测数据(如温度、气压、风速等),通过复杂的物理模型进行预测。尽管系统可以提供高精度的预测,但它的核心算法并不会从历史错误中学习或改进。每次预报时,系统依赖相同的数学模型来生成预测结果,缺乏自我调整能力。这种系统依然属于冯·诺依曼机器。
2. AlphaGo:AI中的学习能力
在人工智能领域,与传统计算机系统不同的是,AI能够自主学习和改进。一个经典的例子是AlphaGo。这款由DeepMind开发的围棋AI通过深度学习(Deep Learning)和强化学习(Reinforcement Learning)技术,不仅能够对局,还能通过与人类和自我对弈,持续改进策略,最终击败了世界围棋冠军。
AlphaGo的强大之处在于,它不仅遵循既定规则下棋,还通过对弈后的分析进行自我优化。通过这种持续的学习,AlphaGo在与人类高手对战的过程中,逐步提升自己的棋力。这展示了AI相较于传统计算系统的优势:不仅能处理数据,还能从中学习和改进。
3. 学习方法的分类
机器学习的方法可以分为三类:监督学习(Supervised Learning)、无监督学习(Unsupervised Learning)和强化学习(Reinforcement Learning)。每种方法都有其独特的学习机制和应用场景。
3.1 监督学习(Supervised Learning)👨🏫
监督学习是一种有标签数据的学习方法。模型通过学习输入数据及其对应的目标输出(也称为“标签”),从而在新数据上做出预测。监督学习广泛应用于分类(Classification)和回归(Regression)任务中。
例子:人脸识别
人脸识别(Face Recognition)是监督学习的典型应用。在人脸识别系统中,我们提供大量标注了身份的图片,通过这些数据训练模型,使其能够识别新的人脸图像。在这个过程中,系统通过学习面部特征,如眼睛、鼻子、嘴巴等,识别并匹配身份。监督学习的核心在于模型学会了如何将输入(图像数据)映射到输出(身份标签)。
在数学上,监督学习的训练过程可以通过以下损失函数(Loss Function)来表示:
L ( θ ) = 1 n ∑ i = 1 n L ( f θ ( x i ) , y i ) L(\theta) = \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(f_\theta(x_i), y_i) L(θ)=n1i=1∑nL(fθ(xi),yi)
其中, L ( θ ) L(\theta) L(θ)是损失函数, f θ ( x i ) f_\theta(x_i) fθ(xi)是模型的预测结果, y i y_i yi是真实标签, L \mathcal{L} L用于衡量预测结果与真实结果之间的差异。
3.2 无监督学习(Unsupervised Learning)🤔
无监督学习与监督学习不同,它没有明确的目标输出或标签。模型通过分析数据中的内在结构,寻找模式或分组。无监督学习适用于聚类(Clustering)、降维(Dimensionality Reduction)等任务。
例子:聚类
聚类(Clustering)是一种典型的无监督学习任务,常用于将相似的样本自动分组。例如,在电商平台中,聚类算法可以根据用户的浏览和购买行为,将客户分为不同的群体,从而进行个性化推荐。无监督学习不需要预先标注数据,它通过分析数据的特征来自行学习。
在数学上,常见的聚类目标函数如下:
min ∑ i = 1 k ∑ x ∈ C i ∣ ∣ x − μ i ∣ ∣ 2 \min \sum_{i=1}^{k} \sum_{x \in C_i} ||x - \mu_i||^2 mini=1∑kx∈Ci∑∣∣x−μi∣∣2
其中, C i C_i Ci是第 i i i类的数据点集合, μ i \mu_i μi是该类的质心。
3.3 强化学习(Reinforcement Learning)🏆
强化学习是一种通过与环境交互、通过奖惩机制进行学习的方法。在强化学习中,智能体(Agent)通过执行动作(Action)来获得奖励或惩罚,并根据这些反馈调整策略,从而学会做出最优决策。强化学习适用于长期策略优化问题。
例子:训练宠物
训练狗狗是一种强化学习的现实例子。当你训练狗狗坐下时,如果它正确地执行了命令,你会给予奖励(如食物),反之则不给予。通过这种正向激励,狗狗逐渐学会了如何响应指令。在机器学习中,强化学习同样通过奖励和惩罚来优化智能体的决策。
强化学习的目标是通过最大化累积奖励来优化策略,具体公式如下:
Q ( s , a ) = R ( s , a ) + γ max a ′ Q ( s ′ , a ′ ) Q(s, a) = R(s, a) + \gamma \max_{a'} Q(s', a') Q(s,a)=R(s,a)+γa′maxQ(s′,a′)
其中, Q ( s , a ) Q(s, a) Q(s,a)表示在状态 s s s下采取动作 a a a的价值, R ( s , a ) R(s, a) R(s,a)是即时奖励, γ \gamma γ是折扣因子,用于权衡未来奖励的价值。
4. 人工神经网络(Artificial Neural Networks, ANN)🧠🤖
人工神经网络(Artificial Neural Networks, ANN)是模拟人类大脑中神经元(Neurons)工作原理的一种计算模型。人类大脑中,神经元通过突触(Synapse)传递信号,人工神经网络通过调整连接权重(Weights)来模仿这一过程,从而实现学习。
4.1 神经元模型
每个人工神经元接收多个输入信号,通过加权求和计算并通过激活函数生成输出:
y = σ ( ∑ i = 1 n w i x i + b ) y = \sigma \left( \sum_{i=1}^{n} w_i x_i + b \right) y=σ(i=1∑nwixi+b)
其中, x i x_i xi 是输入信号, w i w_i wi 是对应的权重, b b b 是偏置项, σ \sigma σ 是激活函数。常见的激活函数包括:
- Sigmoid函数: σ ( x ) = 1 1 + e − x \sigma(x) = \frac{1}{1 + e^{-x}} σ(x)=1+e−x1
- ReLU函数: σ ( x ) = max ( 0 , x ) \sigma(x) = \max(0, x) σ(x)=max(0,x)
4.2 前馈神经网络(Feedforward Neural Networks, FNN)
前馈神经网络(Feedforward Neural Networks, FNN)是一种最基本的人工神经网络架构,信息从输入层传递到隐藏层,再到输出层。这种模型的训练通过反向传播(Backpropagation)算法实现,通过调整每层之间的权重,逐
步减少预测误差。
例子:股票预测
前馈神经网络可以用于处理时间序列数据,如股票市场预测。通过学习历史数据中的模式,模型可以基于当前市场数据预测未来的趋势。这种方法广泛应用于金融市场的交易策略优化中。
4.3 Hopfield网络与联想记忆
Hopfield网络(Hopfield Network)是一种自联想网络(Auto-associative Network),常用于存储和检索模式信息。Hopfield网络的结构为递归网络,可以通过输出信息反馈调整下一次输入。在AI领域,它不仅用于模式识别,还用于解决复杂的优化问题,如旅行商问题(Travelling Salesman Problem, TSP)。
5. Actor-Critic多智能体模型 🎮
在强化学习中,一个常见的多智能体系统是Actor-Critic模型。该模型由演员(Actor)和评论家(Critic)两个智能体组成。演员根据当前状态选择动作,评论家则根据动作给出反馈,指导演员调整策略。
这种模型广泛应用于游戏AI(如AlphaGo)、机器人控制和资源调度。通过不断优化演员的策略,系统逐渐学会如何在环境中做出最优决策,平衡短期和长期奖励。
总结
机器学习作为人工智能的核心技术,贯穿于我们日常生活的方方面面。通过监督学习、无监督学习和强化学习,机器能够模拟人类的学习方式并作出智能决策。人工神经网络通过模仿人类大脑的结构,使得机器学习能够处理复杂的数据模式,并从中学习。随着这些技术的不断发展,AI系统将变得更加智能化,应用范围也将进一步扩展。
💡 你对机器学习有什么看法? 欢迎在评论区分享你的观点,让我们一起探讨这个快速发展的领域!
相关文章:

【ShuQiHere】探索人工智能核心:机器学习的奥秘
【ShuQiHere】 💡 什么是机器学习? 机器学习(Machine Learning, ML)是人工智能(Artificial Intelligence, AI)中最关键的组成部分之一。它使得计算机不仅能够处理数据,还能从数据中学习&#x…...

LeeCode打卡第二十四天
LeeCode打卡第二十四天 第一题:对称二叉树(LeeCode第101题): 给你一个二叉树的根节点 root , 检查它是否轴对称。 /*** Definition for a binary tree node.* public class TreeNode {* int val;* TreeNode left;* …...

什么是科技与艺术相结合的异形创意圆形(饼/盘)LED显示屏
在当今数字化与创意并重的时代,科技与艺术的融合已成为推动社会进步与文化创新的重要力量。其中,晶锐创显异形创意圆形LED显示屏作为这一趋势下的杰出代表,不仅打破了传统显示设备的形态束缚,更以其独特的造型、卓越的显示效果和广…...

AI大模型知识点大梳理_ai大模型知识学习,零基础入门到精通,收藏这一篇就够了
文章目录 AI大模型是什么AI大模型发展历程AI大模型的底层原理AI大模型解决的问题大模型的优点和不足影响个人观点 AI大模型是什么 AI大模型是指具有巨大参数量的深度学习模型,通常包含数十亿甚至数万亿个参数。这些模型可以通过学习大量的数据来提高预测能力&…...

NVG040W语音芯片:为制氧机带来个性化语音提示和报警功能
在当今社会,家庭医疗设备和健康保健产品越来越受到人们的关注。制氧机作为其中的一种,为许多需要氧气治疗的人们提供了重要的帮助。然而,对于许多用户来说,如何正确操作和维护这些设备仍然是一个挑战。为此,NVG040W语音…...

OpenCV结构分析与形状描述符(12)椭圆拟合函数fitEllipseAMS()的使用
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 围绕一组2D点拟合一个椭圆。 该函数计算出一个椭圆,该椭圆拟合一组2D点。它返回一个内切于该椭圆的旋转矩形。使用了由[260]提出的近…...

安卓显示驱动
安卓显示驱动是用于在Android设备上提供图形和视频显示的底层软件组件。 显示驱动在Android系统中扮演着至关重要的角色,它们负责将图形和视频内容从系统内存传输到显示屏上。这些驱动程序确保了用户界面、图像、视频和游戏等视觉元素的正常显示。以下是关于安卓显…...

java重点学习-集合(List)
七 集合(List) 7.1 复杂度分析 7.2 数组 1.数组(Array)是一种用连续的内存空间存储相同数据类型 数据的线性数据结构。 2.数组下标为什么从0开始 寻址公式是:baseAddressi*dataTypeSize,计算下标的内存地址效率较高 3.查找的时间复杂度 随机(…...

【PCB测试】最常见的PCB测试方法
系列文章目录 1.元件基础 2.电路设计 3.PCB设计 4.元件焊接 5.板子调试 6.程序设计 7.算法学习 8.编写exe 9.检测标准 10.项目举例 11.职业规划 文章目录 一、PCB测试的好处1.发现错误2.降低成本3.节省时间4.减少退货率5.提高安全性 二、PCB测试内容1.孔壁质量2.电镀铜3.清…...

AtCoder Beginner Contest 370 ABCD题详细题解(C++,Python)
前言: 本文为AtCoder Beginner Contest 370 ABCD题的详细题解,包含C,Python语言描述,觉得有帮助或者写的不错可以点个赞 个人感觉D比C简单,C那里的字典序有点不理解, E应该是前缀和加dp,但是是dp不明白,等我明白了会更…...

斯坦福研究人员探讨大型语言模型在社交网络生成中的应用及其在政治同质性上的偏见
社交网络生成在许多领域有着广泛的应用,比如流行病建模、社交媒体模拟以及理解社交现象如两极化等。当由于隐私问题或其他限制无法直接观察真实网络时,创建逼真的社交网络就显得尤为重要。这些生成的网络对于在这些情况下准确建模互动和预测结果至关重要…...

一招教你找到Facebook广告的最佳发帖时间
在社交媒体上做广告时,时机是至关重要的。有时候你投放的广告参与度低,很有可能是因为你没有在适当的时机投放广告。这篇文章会教你如何找到适合自己的广告投放时间,如果你感兴趣的话,就继续看下去吧! 首先࿰…...

【数据库】MySQL-基础篇-多表查询
专栏文章索引:数据库 有问题可私聊:QQ:3375119339 目录 一、多表关系 1.一对多 2.多对多 3.一对一 二、多表查询概述 1.数据准备 2.概述 3.分类 三、内连接 1.隐式内连接 2.显式内连接 3.案例 四、外连接 1.左外连接 2.右外连…...

MongoDB事务机制
事务机制 1.事务概念 在对数据的操作的过程中,涉及到一连串的操作,这些操作如果失败,会导致我们的数据部分变化了,部分没变化。这个过程就好比如你去吃早餐,你点完餐了,并且吃完早餐了,没付钱你…...

大模型 LLM(Large Language Models)如今十分火爆,对于初入此领域的新人小白来说,应该如何入门 LLM 呢?是否有值得推荐的入门教程呢?
前言 很明显,这是一个偏学术方向的指南要求,所以我会把整个LLM应用的从数学到编程语言,从框架到常用模型的学习方法,给你捋一个通透。也可能是不爱学习的劝退文。 通常要达到熟练的进行LLM相关的学术研究与开发,至少…...

Python实现模糊逻辑算法
博客目录 引言 什么是模糊逻辑?模糊逻辑的应用场景模糊逻辑的基本思想 模糊逻辑的原理 模糊集合与隶属函数模糊推理系统(FIS)模糊规则和推理过程 Python实现模糊逻辑算法 面向对象的设计思路代码实现示例与解释 模糊逻辑算法应用实例&…...

MATLAB、FPGA、STM32中调用FFT计算频率、幅值及相位差
系列文章目录 文章目录 系列文章目录前言MATLABSTM32调用DSPSTM32中实现FFT关于初相位 FPGA 前言 最近在学习如何在STM32中调用FFT MATLAB 首先对FFT进行一下说明,我们输入N个点的数据到FFT中,FFT会返回N个点的数据,这些数据都是复数&#…...

基于SSM的医院药品库存系统的设计与实现---附源码76620
摘要 医院药品库存管理是医院管理的重要组成部分,对于保障医疗服务的质量和效率具有重要意义。传统的手工管理方式已经无法满足药品库存管理的需求,因此建立一个医院药品库存系统具有重要的实践价值。 使用Java语言开发医院药品库存系统可以兼容不同操作…...

Jupyter管理内核命令
1.显示有哪些内核 jupyter kernelspec list2.删除某个内核 jupyter kernelspec remove xxx3.添加某个内核 先激活环境 conda activate test_env然后安装ipykernel包 pip install ipykernel在虚拟环境中安装ipykernel包 python -m ipykernel install --name test_env安装过…...

简单分享-获取.txt文件内数据 文件内数据逗号分隔 分隔符 C语言
简单分享-获取.txt文件内数据 文件内数据逗号分隔 分隔符 C语言 数据存储到文件中,把文件数据读取到数组,方便数据处理。 # include <stdio.h> # include <stdlib.h> # include <string.h>#define DATANUM 307200 //数组个数 int ma…...

从0开始手把手带你入门Vue3
前言 本文并非标题党,而是实实在在的硬核文章,如果有想要学习Vue3的网友,可以大致的浏览一下本文,总体来说本篇博客涵盖了Vue3中绝大部分内容,包含常用的CompositionAPI(组合式API)、其它CompositionAPI以及一些新的特…...

C# USB通信技术(通过LibUsbDotNet库)
文章目录 1.下载LibusbDotNet库2.引入命名空间3. 实例化USB设备4.发送数据5.关闭连接 1.下载LibusbDotNet库 右击项目选择管理NuGet程序包在弹出的界面中搜索LibusbDotNet,然后下载安装。 2.引入命名空间 using LibUsbDotNet; using LibUsbDotNet.Main;3. 实例化…...

常用Java API
1 字符串处理 1.1 String 类 String 类是 Java 中不可变的字符序列。它提供了以下常用方法: length():返回字符串的长度。 charAt(index):返回指定索引处的字符。 substring(startIndex, endIndex):返回从 startIndex 到 endI…...

使用opencv优化图片(画面变清晰)
文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强…...

Java 回顾方法的定义
一、方法的定义 1.修饰符(public static…)详见博客【Java 方法的定义】 2.返回值(int, double, char[],…., void)详见博客【Java 方法的定义】 3. break:跳出switch 结束循环,详…...

网络安全产品认证证书大全(持续更新...)
文章目录 一、引言二、《计算机信息系统安全专用产品销售许可证》2.1 背景2.2 法律法规依据2.3 检测机构2.4 检测依据2.5 认证流程2.6 证书样本 三、《网络关键设备和网络安全专用产品安全认证证书》3.1 背景3.2 法律法规依据3.3 检测机构3.4安全认证和安全检测依据标准3.5 认证…...

win10 安装多个版本的python
1,安装python3.9 和python3.10 2, 安装完之后分别打开两个版本的Python的安装目录(第一层目录),把pythonw.exe分别重命名为pythonw_39.exe和pythonw_310.exe,把python.exe复制一份,并分别重命名为python_…...

【ORACLE】数据备份
Oracle数据库备份是确保数据安全和可靠性的重要环节。Oracle提供了多种备份方法,包括冷备份、热备份、逻辑备份(如使用expdp和impdp)以及使用RMAN(Recovery Manager)进行物理备份。 冷备份:在数据库关闭的状…...

[Golang] goroutine
[Golang] goroutine 文章目录 [Golang] goroutine并发进程和线程协程 goroutine概述如何使用goroutine 并发 进程和线程 谈到并发,大多都离不开进程和线程,什么是进程、什么是线程? 进程可以这样理解:进程就是运行着的程序&…...

【前端】JavaScript高级教程:函数高级——执行上下文与执行上下文栈
文章目录 遍历提升与函数提升执行上下文执行上下文栈(1)执行上下文栈(2)面试题 遍历提升与函数提升 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>01_变量提升与函数提升</title> </head&…...