当前位置: 首页 > news >正文

AI大模型知识点大梳理_ai大模型知识学习,零基础入门到精通,收藏这一篇就够了

文章目录
    • AI大模型是什么
    • AI大模型发展历程
    • AI大模型的底层原理
    • AI大模型解决的问题
    • 大模型的优点和不足
    • 影响
    • 个人观点
AI大模型是什么

AI大模型是指具有巨大参数量的深度学习模型,通常包含数十亿甚至数万亿个参数。这些模型可以通过学习大量的数据来提高预测能力,从而在自然语言处理、计算机视觉、自主驾驶等领域取得重要突破。
AI大模型的定义具体可以根据参数规模来分类。根据OpenAI的分类方法,可以将AI模型分为以下几类:
小型模型: ≤ 1百万个参数
中型模型:1百万 – 1亿个参数
大型模型:1亿 – 10亿个参数
极大型模型:≥ 10亿个参数
其中大型模型和极大型模型可以被视为AI大模型。总的来说,“大模型”应该是基于具有超级大规模的、甚至可以称之为“超参数”的模型,需要大量的计算资源、更强的计算能力以及更优秀的算法优化方法进行训练和优化。

AI大模型发展历程

2022年11月30日由总部位于旧金山的OpenAI推出ChatGPT3.5。
2023年2月, Google推出类似于ChatGPT的对话人工智能服务Bard, 基于其开发的对话编程语言模型(LaMDA)。但有很多限制,文字处理仅支持美式英语。
2023年3月12日,OpenAI发布多模态模型GPT-4,并计划推出图像输入功能。
2023年2月, 百度也于确认类ChatGPT聊天机器人项目名字确定为"文心一言", 英文名ERNIE Bot。
2023年2月, 复旦大学自然语言处理实验室邱锡鹏教授团队推出对话式大型语言模型MOSS。
2023年3月14日,由清华技术成果转化的公司智谱AI基于GLM-130B千亿基座模型的ChatGLM开启邀请制内测,同时开源了中英双语对话模型ChatGLM-6B,支持在单张消费级显卡上进行推理使用。
2023年4月7日,阿里云研发语言模型“通义千问”开始邀请用户测试体验。现阶段该模型主要定向邀请企业用户进行体验测试,获得邀请码用户可通过官网参与体验
2023年5月6日,科大讯飞发布认知大模型“星火”。科大讯飞董事长刘庆峰表示,当前讯飞星火认知大模型已经在文本生成、知识问答、数学能力三大能力上已超ChatGPT,10月底将整体赶超ChatGPT。
2023年3月,由前OpenAI员工共同创立的初创公司Anthropic推出了大型语言模型Claude。它可以被指示执行一系列任务,包括搜索文档,总结,写作和编码,以及回答有关特定主题的问题。
2023年3月, 华为宣布即将推出盘古大模型。

AI大模型的底层原理

AI大模型(如深度学习模型)的原理是基于神经网络和大量数据的训练。这些模型通过模拟人脑的神经元结构,对输入数据进行多层抽象和处理,从而实现对复杂任务的学习和预测。
AI大模型的训练主要分为:数据预处理、模型构建、模型训练、模型评估四个步骤,更加详细的介绍如下所示:

1.数据预处理:首先,需要对原始数据进行清洗、整理和标注,以便为模型提供合适的输入。这一阶段可能包括去除噪声、填充缺失值、归一化等操作。
2.构建神经网络:接下来,根据任务需求,设计并搭建一个神经网络。神经网络通常由多个层次组成,每个层次包含若干个神经元。神经元之间通过权重连接,用于表示输入数据与输出数据之间的关系。
3.前向传播:将经过预处理的数据输入到神经网络中,按照权重计算得出各层神经元的输出。这个过程称为前向传播。
4.激活函数:在神经网络的每一层之后,通常会使用激活函数(如ReLU、Sigmoid或Tanh等)对输出进行非线性变换,以增加模型的表达能力。
5.损失函数:为了衡量模型预测结果与真实目标之间的差距,需要定义一个损失函数。损失函数会计算预测误差,并将其作为优化目标。常见的损失函数有均方误差(MSE)、交叉熵损失(Cross-Entropy Loss)等。
6.优化算法:根据损失函数,选择合适的优化算法(如梯度下降、随机梯度下降、Adam等)来更新神经网络中的权重和偏置,以减小损失函数的值。这个过程称为反向传播。
7.训练与验证:重复执行上述步骤,直到模型在训练集上达到满意的性能。为了防止过拟合,还需要在验证集上评估模型的泛化能力。如果发现模型在验证集上的表现不佳,可以调整网络结构、超参数或训练策略等。
8.部署与使用:当模型在训练集和验证集上表现良好时,可以将数据模型进行部署和使用。

AI大模型解决的问题

1.自然语言处理:AI大模型,例如 GPT-3 和 BERT,大幅提升了自然语言处理任务的性能,如翻译、问答、分词、文本生成等领域。AI大模型通过学习海量的语料库和上下文,让计算机更加准确地理解和处理自然语言。
2.计算机视觉:AI大模型,例如 ResNet 和 EfficientNet,推动了计算机视觉任务的发展,包括目标检测、图像分类、语义分割等领域。AI大模型通过学习大量的图像数据和构建更深更复杂的神经网络,使计算机能够对图像进行更加准确的识别和分析。
3.人脸识别:大模型,例如Facenet和 DeepFace,提高了人脸识别的准确性和鲁棒性,大幅度提升了人脸识别技术在安防、金融、医疗等领域的应用。
4.声音识别:AI大模型,例如Wav2Vec和Transformer,使语音识别技术取得了更高的准确性,大幅提高了语音识别技术在交互式应用和智能家居领域的应用。

大模型的优点和不足

优点:
1.更准确:AI大模型有更多的参数,能够处理更复杂的信息和更深入的上下文,提高了精度和准确性。
2.更智能:AI大模型能够模拟人类的思维和学习模式,通过大量的训练数据,从而提高人工智能的智能性。
3.更具通用性:AI大模型能够自适应不同的工作和环境,可以适应各种不同的自然语言、视觉和声音数据。
4.更加高效:AI大模型通过并行计算和分布式训练,大大提高了计算效率,能够在短时间内处理大量的数据。
不足:
1.计算资源问题:AI大模型需要更多的计算资源,如多台GPU和分布式计算等,高昂的成本阻碍了普及和应用。
2.数据集问题:AI大模型需要大量的标注数据,以便训练和优化模型。但实际场景中的数据通常是不完整、不一致和缺乏标注的。
3.可解释性问题:AI大模型对于预测结果的解释通常比较困难,难以解释其判断的依据和原因, 使得大模型的使用和应用存在风险和误判的情况。
4.环境依赖:AI大模型对于使用语言、环境等存在更高的依赖性,需要针对特定场景进行定制和使用。
5.OpenAI承认ChatGPT"有时会写出看似合理但不正确或荒谬的答案",这在大型语言模型中很常见,称作人工智能幻觉。其奖励模型围绕人类监督而设计,可能导致过度优化,从而影响性能,即古德哈特定律。

影响

AI大模型具有极高的性能和准确性,将在很多方面带来积极的影响,例如在自然语言处理、计算机视觉、医疗诊断、交通控制等领域。但与此同时,AI大模型也可能会带来以下一些社会影响:
1.经济影响:AI大模型可能带来巨额投资,需要高昂的计算资源和优秀的人才团队。这可能会进一步加剧数字鸿沟,导致巨型科技公司的垄断,和对于小型企业和开发者的不利影响。 同时AI大模型可以通过自动化和智能化的方式提高生产效率,减少人力成本; AI大模型可以帮助人们更好地理解复杂的问题,发现新的解决方案和商业模式;
2.就业影响:AI大模型在某些领域可以实现人机合作或自动化,减少人力资源的需求。这可能会对现有的行业和工作造成影响,需要更新技能或转移职业方向。AI大模型可能会改变社会结构,导致某些职业的消失或新兴职业的出现。
3.隐私保护:用于训练大模型的数据往往包含大量的个人隐私数据,如医疗数据、银行账户等,保护这些数据的安全和隐私变得尤为重要。因此需要适当的数据隐私和安全保护机制。
4.偏差问题:AI大模型的决策过程往往非常复杂,使得其决策过程难以解释,容易产生预测偏差。这可能导致偏见和歧视,需要制定合适的规范和标准来规范AI的开发和应用。
5.引发伦理问题:AI大模型可能会对人类的价值观和道德观产生影响,引发一些伦理问题。例如,在自动驾驶汽车上出现道德困境时(如是否应该让一名行人通过), AI大模型可能会给出不同的答案,这可能会引起争议。

个人观点

AI大模型百花齐放百家争鸣的时代已经是现实了,不管你愿不愿意承认,AI时代已经到来了。与其在AI抢占就业机会的危机中患得患失,不如快点接受这个新技术,将AI引入自己的工作中,通过AI来提升自己的生产力和创造力。打不过就加入,不丢人。顺应时代还有一线生机,顽固不化故步自封只能被时代的洪流碾碎。

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

相关文章:

AI大模型知识点大梳理_ai大模型知识学习,零基础入门到精通,收藏这一篇就够了

文章目录 AI大模型是什么AI大模型发展历程AI大模型的底层原理AI大模型解决的问题大模型的优点和不足影响个人观点 AI大模型是什么 AI大模型是指具有巨大参数量的深度学习模型,通常包含数十亿甚至数万亿个参数。这些模型可以通过学习大量的数据来提高预测能力&…...

NVG040W语音芯片:为制氧机带来个性化语音提示和报警功能

在当今社会,家庭医疗设备和健康保健产品越来越受到人们的关注。制氧机作为其中的一种,为许多需要氧气治疗的人们提供了重要的帮助。然而,对于许多用户来说,如何正确操作和维护这些设备仍然是一个挑战。为此,NVG040W语音…...

OpenCV结构分析与形状描述符(12)椭圆拟合函数fitEllipseAMS()的使用

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 围绕一组2D点拟合一个椭圆。 该函数计算出一个椭圆,该椭圆拟合一组2D点。它返回一个内切于该椭圆的旋转矩形。使用了由[260]提出的近…...

安卓显示驱动

安卓显示驱动是用于在Android设备上提供图形和视频显示的底层软件组件。 显示驱动在Android系统中扮演着至关重要的角色,它们负责将图形和视频内容从系统内存传输到显示屏上。这些驱动程序确保了用户界面、图像、视频和游戏等视觉元素的正常显示。以下是关于安卓显…...

java重点学习-集合(List)

七 集合(List) 7.1 复杂度分析 7.2 数组 1.数组(Array)是一种用连续的内存空间存储相同数据类型 数据的线性数据结构。 2.数组下标为什么从0开始 寻址公式是:baseAddressi*dataTypeSize,计算下标的内存地址效率较高 3.查找的时间复杂度 随机(…...

【PCB测试】最常见的PCB测试方法

系列文章目录 1.元件基础 2.电路设计 3.PCB设计 4.元件焊接 5.板子调试 6.程序设计 7.算法学习 8.编写exe 9.检测标准 10.项目举例 11.职业规划 文章目录 一、PCB测试的好处1.发现错误2.降低成本3.节省时间4.减少退货率5.提高安全性 二、PCB测试内容1.孔壁质量2.电镀铜3.清…...

AtCoder Beginner Contest 370 ABCD题详细题解(C++,Python)

前言: 本文为AtCoder Beginner Contest 370 ABCD题的详细题解,包含C,Python语言描述,觉得有帮助或者写的不错可以点个赞 个人感觉D比C简单,C那里的字典序有点不理解, E应该是前缀和加dp,但是是dp不明白,等我明白了会更…...

斯坦福研究人员探讨大型语言模型在社交网络生成中的应用及其在政治同质性上的偏见

社交网络生成在许多领域有着广泛的应用,比如流行病建模、社交媒体模拟以及理解社交现象如两极化等。当由于隐私问题或其他限制无法直接观察真实网络时,创建逼真的社交网络就显得尤为重要。这些生成的网络对于在这些情况下准确建模互动和预测结果至关重要…...

一招教你找到Facebook广告的最佳发帖时间

在社交媒体上做广告时,时机是至关重要的。有时候你投放的广告参与度低,很有可能是因为你没有在适当的时机投放广告。这篇文章会教你如何找到适合自己的广告投放时间,如果你感兴趣的话,就继续看下去吧! 首先&#xff0…...

【数据库】MySQL-基础篇-多表查询

专栏文章索引:数据库 有问题可私聊:QQ:3375119339 目录 一、多表关系 1.一对多 2.多对多 3.一对一 二、多表查询概述 1.数据准备 2.概述 3.分类 三、内连接 1.隐式内连接 2.显式内连接 3.案例 四、外连接 1.左外连接 2.右外连…...

MongoDB事务机制

事务机制 1.事务概念 在对数据的操作的过程中,涉及到一连串的操作,这些操作如果失败,会导致我们的数据部分变化了,部分没变化。这个过程就好比如你去吃早餐,你点完餐了,并且吃完早餐了,没付钱你…...

大模型 LLM(Large Language Models)如今十分火爆,对于初入此领域的新人小白来说,应该如何入门 LLM 呢?是否有值得推荐的入门教程呢?

前言 很明显,这是一个偏学术方向的指南要求,所以我会把整个LLM应用的从数学到编程语言,从框架到常用模型的学习方法,给你捋一个通透。也可能是不爱学习的劝退文。 通常要达到熟练的进行LLM相关的学术研究与开发,至少…...

Python实现模糊逻辑算法

博客目录 引言 什么是模糊逻辑?模糊逻辑的应用场景模糊逻辑的基本思想 模糊逻辑的原理 模糊集合与隶属函数模糊推理系统(FIS)模糊规则和推理过程 Python实现模糊逻辑算法 面向对象的设计思路代码实现示例与解释 模糊逻辑算法应用实例&…...

MATLAB、FPGA、STM32中调用FFT计算频率、幅值及相位差

系列文章目录 文章目录 系列文章目录前言MATLABSTM32调用DSPSTM32中实现FFT关于初相位 FPGA 前言 最近在学习如何在STM32中调用FFT MATLAB 首先对FFT进行一下说明,我们输入N个点的数据到FFT中,FFT会返回N个点的数据,这些数据都是复数&#…...

基于SSM的医院药品库存系统的设计与实现---附源码76620

摘要 医院药品库存管理是医院管理的重要组成部分,对于保障医疗服务的质量和效率具有重要意义。传统的手工管理方式已经无法满足药品库存管理的需求,因此建立一个医院药品库存系统具有重要的实践价值。 使用Java语言开发医院药品库存系统可以兼容不同操作…...

Jupyter管理内核命令

1.显示有哪些内核 jupyter kernelspec list2.删除某个内核 jupyter kernelspec remove xxx3.添加某个内核 先激活环境 conda activate test_env然后安装ipykernel包 pip install ipykernel在虚拟环境中安装ipykernel包 python -m ipykernel install --name test_env安装过…...

简单分享-获取.txt文件内数据 文件内数据逗号分隔 分隔符 C语言

简单分享-获取.txt文件内数据 文件内数据逗号分隔 分隔符 C语言 数据存储到文件中&#xff0c;把文件数据读取到数组&#xff0c;方便数据处理。 # include <stdio.h> # include <stdlib.h> # include <string.h>#define DATANUM 307200 //数组个数 int ma…...

从0开始手把手带你入门Vue3

前言 本文并非标题党&#xff0c;而是实实在在的硬核文章&#xff0c;如果有想要学习Vue3的网友&#xff0c;可以大致的浏览一下本文&#xff0c;总体来说本篇博客涵盖了Vue3中绝大部分内容&#xff0c;包含常用的CompositionAPI(组合式API)、其它CompositionAPI以及一些新的特…...

C# USB通信技术(通过LibUsbDotNet库)

文章目录 1.下载LibusbDotNet库2.引入命名空间3. 实例化USB设备4.发送数据5.关闭连接 1.下载LibusbDotNet库 右击项目选择管理NuGet程序包在弹出的界面中搜索LibusbDotNet&#xff0c;然后下载安装。 2.引入命名空间 using LibUsbDotNet; using LibUsbDotNet.Main;3. 实例化…...

常用Java API

1 字符串处理 1.1 String 类 String 类是 Java 中不可变的字符序列。它提供了以下常用方法&#xff1a; length()&#xff1a;返回字符串的长度。 charAt(index)&#xff1a;返回指定索引处的字符。 substring(startIndex, endIndex)&#xff1a;返回从 startIndex 到 endI…...

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化&#xff0c;使其看起来更清晰&#xff0c;同时保持尺寸不变&#xff0c;通常涉及到图像处理技术如锐化、降噪、对比度增强…...

Java 回顾方法的定义

一、方法的定义 1&#xff0e;修饰符&#xff08;public static…&#xff09;详见博客【Java 方法的定义】 2&#xff0e;返回值&#xff08;int, double, char[],…., void&#xff09;详见博客【Java 方法的定义】 3. break&#xff1a;跳出switch 结束循环&#xff0c;详…...

网络安全产品认证证书大全(持续更新...)

文章目录 一、引言二、《计算机信息系统安全专用产品销售许可证》2.1 背景2.2 法律法规依据2.3 检测机构2.4 检测依据2.5 认证流程2.6 证书样本 三、《网络关键设备和网络安全专用产品安全认证证书》3.1 背景3.2 法律法规依据3.3 检测机构3.4安全认证和安全检测依据标准3.5 认证…...

win10 安装多个版本的python

1&#xff0c;安装python3.9 和python3.10 2, 安装完之后分别打开两个版本的Python的安装目录&#xff08;第一层目录&#xff09;&#xff0c;把pythonw.exe分别重命名为pythonw_39.exe和pythonw_310.exe&#xff0c;把python.exe复制一份&#xff0c;并分别重命名为python_…...

【ORACLE】数据备份

Oracle数据库备份是确保数据安全和可靠性的重要环节。Oracle提供了多种备份方法&#xff0c;包括冷备份、热备份、逻辑备份&#xff08;如使用expdp和impdp&#xff09;以及使用RMAN&#xff08;Recovery Manager&#xff09;进行物理备份。 冷备份&#xff1a;在数据库关闭的状…...

[Golang] goroutine

[Golang] goroutine 文章目录 [Golang] goroutine并发进程和线程协程 goroutine概述如何使用goroutine 并发 进程和线程 谈到并发&#xff0c;大多都离不开进程和线程&#xff0c;什么是进程、什么是线程&#xff1f; 进程可以这样理解&#xff1a;进程就是运行着的程序&…...

【前端】JavaScript高级教程:函数高级——执行上下文与执行上下文栈

文章目录 遍历提升与函数提升执行上下文执行上下文栈(1)执行上下文栈(2)面试题 遍历提升与函数提升 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>01_变量提升与函数提升</title> </head&…...

【阻抗管传递函数法】频域声压,即复声压是指什么

在阻抗管传递函数法中提到的“频域声压数据”&#xff0c;是通过对传声器测得的“时域声压信号”进行快速傅里叶变换&#xff08;FFT&#xff09;后得到的结果。 具体来说&#xff0c;这些频域声压数据指的是传声器测量的声压随时间变化的数据&#xff0c;经过傅里叶变换后&am…...

Python青少年简明教程:类和对象入门

Python青少年简明教程&#xff1a;类和对象入门 Python支持多种编程范式&#xff08;programming paradigms&#xff09;&#xff0c;即支持多种不同的编程风格和方法。初学者开始重点学习关注的编程范式&#xff0c;一般而言是面向过程编程和面向对象编程。面向过程编程&#…...

【vue+el-table】表格操作列宽度跟随按钮个数自适应, 方法封装全局使用

效果图 以上图片分别代表不同用户权限下所能看到的按钮个数, 操作列宽度也会自适应宽度, 就不会一直处于最大宽度, 导致其他权限用户看到的页面出现大量留白问题. 目录 解决方法解决过程中可能出现的问题width赋值时为什么不放update()中btnDom为什么不能直接调用forEach为…...