当前位置: 首页 > news >正文

什么是GWAS全基因组关联分析?

什么是全基因组关联分析?(Genome-Wide Association Study,GWAS)

全基因组关联分析(GWAS)是一种在全基因组范围内搜索遗传变异(通常是单核苷酸多态性,SNP)与复杂性状之间关联的方法。

alt

其核心思想是通过比较群体中不同个体的基因型与表型,识别出与目标性状显著相关的基因位点。GWAS基于连锁不平衡(LD)的原理,即相邻的遗传变异倾向于一起遗传,因此可以通过标记SNP间接捕获致病变异。

GWAS的应用场景

  • 复杂性状解析:用于揭示控制复杂农艺性状(如产量、品质、抗病性等)的遗传基础,探索遗传学机理。

  • 疾病抗性研究:发现与植物病害抗性相关的基因,为育种提供候选基因,其他性状也以此类推。

  • 分子育种:辅助分子标记辅助选择(MAS)和基因组选择(GS)。

数据分析过程与原理

表型数据收集:精确、可靠的表型测定是关键。需在多环境、多重复下评估表型特征等数据,以减少环境误差。

基因型数据获取:利用SNP芯片或高通量测序技术获取全基因组SNP数据。

数据质量控制(QC)
  • 标记过滤:删除缺失率高、次等位基因频率(MAF)低、偏离哈迪-温伯格平衡的SNP。
  • 个体过滤:剔除基因型缺失率高或有杂合度异常的个体。
群体结构和亲缘关系分析
  • 主成分分析(PCA):识别和校正群体结构。
  • STRUCTURE或ADMIXTURE分析:确定群体的组分。
  • 亲缘关系矩阵(Kinship Matrix):估计个体间的亲缘关系。
关联分析模型构建

一般线性模型(GLM):y=Xβ+ϵ

  • y:表型值向量
  • X:基因型矩阵
  • β:效应量向量
  • ϵ:误差项

GLM未考虑群体结构易产生假阳性

混合线性模型(MLM):y=Xβ+Zu+ϵ

  • Z:随机效应的设计矩阵
  • u:随机效应向量,通常包括亲缘关系

MLM同时考虑了群体结构和亲缘关系,降低了假阳性率。

混合线性模型的原理

在全基因组关联分析(GWAS)中,混合线性模型(MLM)是一种广泛应用的统计方法,用于控制群体结构和亲缘关系对关联分析的干扰。MLM通过同时考虑固定效应和随机效应,提高了关联分析的准确性和可靠性。

基本概念

  • 固定效应(Fixed Effects):指感兴趣的因素,其效应是固定的、可重复的。在GWAS中,通常是SNP的基因型效应和群体结构等协变量。
  • 随机效应(Random Effects):指来自总体的随机样本,其效应是随机的、不可重复的。在GWAS中,个体间的亲缘关系被视为随机效应。

模型构建

MLM的基本形式:y=Xβ+Zu+ϵ

  • y:表示个体的表型值(向量长度与个体数相同)
  • x:固定效应矩阵,包括截距、SNP基因型和协变量(例如群体结构等组分)
  • β:固定效应系数向量,通过统计估计计算而得
  • Z:随机效应矩阵,通常为亲缘关系矩阵
  • u:随机效应向量,服从正态分布
  • ϵ:残差向量

固定效应部分(𝑋β):解释了SNP基因型和协变量对表型的线性效应。

随机效应部分(𝑍𝑢):捕捉了个体间由于亲缘关系导致的表型相似性。

误差项(𝜖):无法解释的随机误差。

亲缘关系矩阵(Kinship Matrix)

描述了个体间的遗传相似性,通常通过基因型数据计算,公式如下:

alt

公式左边K表示个体的亲缘关系系数,m表示总的SNP数量,g表示SNP等位基因的编码,p表示SNP等位基因的频率。

举例

用一个简单的示例来解释吧,假设我们有一个研究,目标是寻找影响植物株高的基因位点。我们有10个样本,每个样本都有测量的高度和一个SNP的基因型数据。例如1号样本株高121CM,SNP基因型为0,2号样本株高97CM,SNP基因型为1

alt

接下来构建一个模型,包括固定效应(由SNP引起的基因型效应)和随机效应(由个体亲缘关系引起的效应)

Step 1:构建固定效应设计矩阵𝑋

alt 第一列为截距项,第二列为SNP基因型编码,这是一个10行2列行矩阵。

Step 2:计算亲缘关系矩阵𝐾

由于示例样本简单数量少,我们假设个体间的亲缘关系均等,即𝐾为单位矩阵(每个元素都为1的矩阵,10行×10列单位矩阵)

Step 3:应用MLM进行分析

使用软件(如R中的lme4包)进行参数估计,得到效应的估计值。

结果解释

alt

固定效应估计:截距项是植株的基础高度,SNP效应是斜率,固定效应部分告诉我们,SNP基因型与植物高度之间是否存在关联。随机效应部分控制了个体间由于遗传背景相似性导致的高度相似,避免将这种相似性误认为是SNP的效应。

混合线性模型(MLM)在GWAS中起着关键作用,通过同时考虑固定效应和随机效应,MLM能够有效地控制群体结构和亲缘关系对关联分析的干扰。理解MLM的原理和细节,有助于研究者正确应用该模型,提高关联分析的准确性。

多重检验校正
  • Bonferroni校正:严格控制假阳性,但过于保守。
  • FDR(False Discovery Rate)控制:如Benjamini-Hochberg方法,平衡了假阳性和假阴性。

结果可视化和解释

alt

曼哈顿图:展示每个SNP的关联显著性,直观识别显著关联区域。

alt

QQ图(Quantile-Quantile Plot):评估模型是否存在系统性偏差。

候选基因挖掘

  • 连锁不平衡块分析:确定显著SNP所在的LD区域。
alt
  • 基因注释和功能预测:结合基因组注释,筛选可能的候选基因。
  • 生物学验证:通过qPCR、基因编辑等手段验证候选基因功能。

注意事项

样本量和统计功效:足够大的样本量有助于检测小效应基因。

环境互作效应:考虑基因×环境(G×E)互作,提高关联分析的准确性。

遗传背景复杂性:在多倍体植物如小麦中,基因组复杂,需要更精细的分析方法。

GWAS的优点

  • 高通量性:能够在全基因组范围内同时分析数百万个SNP。
  • 无偏见性:无需预先设定候选基因或区域,具有探索性。
  • 高分辨率:在连锁不平衡的基础上,可以精细定位关联信号。

GWAS的缺点

  • 多重检验问题:大量的统计检验增加了假阳性率,需要严格的校正,降低了检测功效。
  • 群体结构干扰:未校正的群体结构可能导致假关联。
  • 效应大小限制:对小效应等位基因的检测能力有限,需更大样本量。
alt

GWAS是一种强有力的工具,可用于关键基因的挖掘。然而,其有效性取决于高质量的表型和基因型数据、适当的统计模型以及对多重检验和群体结构的校正。理解其原理、优势和局限性,有助于更有效地设计研究、解释结果,并将发现应用于实际育种中。

参考文献:

Yu et al., 2006. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness.

Price et al., 2006. Principal components analysis corrects for stratification in genome-wide association studies.

Wang et al., 2014. Genomic association mapping of quantitative traits in plants.

Yu, J., et al. (2006). A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature Genetics, 38(2), 203-208.

Zhang, Z., et al. (2010). Mixed linear model approach adapted for genome-wide association studies. Nature Genetics, 42(4), 355-360.

Bradbury, P. J., et al. (2007). TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 23(19), 2633-2635.

Lipka, A. E., et al. (2012). GAPIT: genome association and prediction integrated tool. Bioinformatics, 28(18), 2397-2399.

本文由 mdnice 多平台发布

相关文章:

什么是GWAS全基因组关联分析?

什么是全基因组关联分析?(Genome-Wide Association Study,GWAS) 全基因组关联分析(GWAS)是一种在全基因组范围内搜索遗传变异(通常是单核苷酸多态性,SNP)与复杂性状之间关…...

k8s dashboard token 生成/获取

创建示例用户 在本指南中,我们将了解如何使用 Kubernetes 的服务帐户机制创建新用户、授予该用户管理员权限并使用与该用户绑定的承载令牌登录仪表板。 对于以下每个和的代码片段ServiceAccount,ClusterRoleBinding您都应该将它们复制到新的清单文件(如)…...

windows@openssh免密登陆配置@基于powershell快速配置脚本

文章目录 abstract免密自动登录配置介绍👺修改Server配置文件一键脚本修改👺 向ssh server端上传或创建支持免密登录的公钥文件预执行命令👺方式1方式2重启服务以生效👺 傻瓜式配置免密自动登录👺👺准备 操…...

【深度学习】【图像分类】【OnnxRuntime】【Python】VggNet模型部署

【深度学习】【图像分类】【OnnxRuntime】【Python】VggNet模型部署 提示:博主取舍了很多大佬的博文并亲测有效,分享笔记邀大家共同学习讨论 文章目录 【深度学习】【图像分类】【OnnxRuntime】【Python】VggNet模型部署前言Windows平台搭建依赖环境模型转换--pytorch转onnxONN…...

手写排班日历

手写排班日历&#xff1a; 效果图&#xff1a; vue代码如下&#xff1a; <template><div class"YSPB"><div class"title">排班日历</div><div class"banner"><span classiconfont icon-youjiantou click&qu…...

SpringBoot多数据源配置

1、添加依赖 <!-- 数据库驱动 --><!--mysql--><dependency><groupId>mysql</groupId><artifactId>mysql-connector-java</artifactId><version>${mysql-connector-java.version}</version><scope>runtime</sco…...

影响画布微信小程序canvas及skyline和webview用户界面布局的关键流程

影响微信小程序画布canvas及skyline和webview用户界面布局的关键流程 目录 影响微信小程序画布canvas及skyline和webview用户界面布局的关键流程 一、微信小程序canvas开发流程 1.1、官方指南 1.2、客制化开发 第一步&#xff1a;在 WXML 中添加 canvas 组件 第二步&…...

MATLAB图像处理

MATLAB图像处理 MATLAB&#xff0c;作为美国MathWorks公司出品的商业数学软件&#xff0c;以其强大的矩阵运算能力和丰富的函数库&#xff0c;在图像处理领域得到了广泛的应用。MATLAB不仅提供了基础的图像处理功能&#xff0c;还通过图像处理工具箱&#xff08;Image Process…...

【编程底层思考】性能监控和优化:JVM参数调优,诊断工具的使用等。JVM 调优和线上问题排查实战经验总结

JVM性能监控和优化是确保Java应用程序高效运行的关键环节。以下是一些JVM性能监控和优化的方法&#xff0c;以及使用诊断工具和实战经验的总结&#xff1a; 一、JVM参数调优&#xff1a; 堆大小设置 : - Xms&#xff1a;设置JVM启动时的初始堆大小。 - -Xmx&#xff1a;设置J…...

数据库的实施过程分析

在完成了数据库的逻辑结构设计和物理结构设计后&#xff0c;下一步就是将设计成果转化为现实&#xff0c;这一步骤被称为数据库的实施。数据库实施是数据库开发过程中至关重要的一环&#xff0c;它标志着从设计阶段向实际应用的过渡。本文将为你详细讲解数据库实施的各个关键步…...

【Kubernetes】常见面试题汇总(十二)

目录 36.简述 Kubernetes 的负载均衡器&#xff1f; 37.简述 Kubernetes 各模块如何与 APl Server 通信&#xff1f; 38.简述 Kubernetes Scheduler 作用及实现原理&#xff1f; 36.简述 Kubernetes 的负载均衡器&#xff1f; &#xff08;1&#xff09;负载均衡器是暴露服务…...

基于SpringBoot+Vue+MySQL的美术馆管理系统

系统展示 用户前台界面 管理员后台界面 系统背景 随着文化艺术产业的蓬勃发展&#xff0c;美术馆作为展示与传播艺术的重要场所&#xff0c;其管理工作变得日益复杂。为了提升美术馆的运营效率、优化参观体验并加强艺术品管理&#xff0c;我们开发了基于SpringBootVueMySQL的美…...

golang面试

算法&#xff1a; 1.提取二进制位最右边的 r i & (~i 1) 2.树上两个节点最远距离&#xff0c;先考虑头结点参与不参与。 3.暴力递归改dp。 1.确定暴力递归方式。 2.改记忆化搜索 3.严格表方式&#xff1a; 分析可变参数变化范围&#xff0c;参数数量决定表维度、 …...

基于"WT2605C的智能血压计:AI对话引领个性化健康管理新时代,健康守护随时在线

在当今快节奏的生活中&#xff0c;健康管理已成为我们日常不可或缺的一部分。随着科技的进步&#xff0c;智能设备正逐步融入我们的日常生活&#xff0c;为健康管理带来前所未有的便捷与智能化。今天&#xff0c;让我们共同探索WT2605C AI在线方案如何在血压计中发挥革命性作用…...

redis高级教程

一 关系型数据库和 NoSQL 数据库 数据库主要分为两大类&#xff1a;关系型数据库与 NoSQL 数据库 关系型数据库 &#xff0c;是建立在关系模型基础上的数据库&#xff0c;其借助于集合代数等数学概念和方法来处理数据库中的数据主流的 MySQL 、 Oracle 、 MS SQL Server 和 D…...

prfm命令初探

1. 前言 在查看一段neon代码时&#xff0c;发现有如下片段&#xff0c;为使用汇编进行数据预取操作。这是一个新的知识点&#xff0c;记录一下学习过程。 __asm__ volatile("prfm pldl2keep,[%0, #8192] \n""prfm pldl1keep,[%0, #1024] \n":"r"…...

AI大模型需要学什么?怎么学?从零基础入门大模型(保姆级),从这开始出发!

一.初聊大模型 1.为什么要学习大模型&#xff1f; 在学习大模型之前&#xff0c;你不必担心自己缺乏相关知识或认为这太难。我坚信&#xff0c;只要你有学习的意愿并付出努力&#xff0c;你就能够掌握大模型&#xff0c;并能够用它们完成许多有意义的事情。在这个快速变化的时代…...

python自述3

Python 条件控制 if语句的一般形式如下所示: if condition_1: statement_block_1 elif condition_2: statement_block_2 else: statement_block_3 Python 中用 elif 代替了 else if,所以if语句的关键字为:if – elif – else。 注意: 1、每个条件后面要使用冒号 :,表…...

Redis常见的数据结构

Redis底层的数据结构是Redis高效存储和操作数据的基础,Redis提供了五种基本的数据类型&#xff0c;每种类型在底层都有对应的数据结构来实现。这五种数据类型分别是&#xff1a;字符串&#xff08;String&#xff09;、哈希&#xff08;Hash&#xff09;、列表&#xff08;List…...

批量插入insert到SQLServer数据库,BigDecimal精度丢失解决办法,不动代码,从驱动层面解决

概述 相信很多人都遇到过&#xff0c;使用sql server数据库&#xff0c;批量插入数据时&#xff0c;BigDecimal类型出现丢失精度的问题&#xff0c;网上也有很多人给出过解决方案&#xff0c;但一般都要修改应用代码&#xff0c;不推荐。 丢失精度的本质是官方的驱动有BUG造成…...

调用支付宝接口响应40004 SYSTEM_ERROR问题排查

在对接支付宝API的时候&#xff0c;遇到了一些问题&#xff0c;记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...

利用ngx_stream_return_module构建简易 TCP/UDP 响应网关

一、模块概述 ngx_stream_return_module 提供了一个极简的指令&#xff1a; return <value>;在收到客户端连接后&#xff0c;立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量&#xff08;如 $time_iso8601、$remote_addr 等&#xff09;&a…...

FFmpeg 低延迟同屏方案

引言 在实时互动需求激增的当下&#xff0c;无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作&#xff0c;还是游戏直播的画面实时传输&#xff0c;低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架&#xff0c;凭借其灵活的编解码、数据…...

23-Oracle 23 ai 区块链表(Blockchain Table)

小伙伴有没有在金融强合规的领域中遇见&#xff0c;必须要保持数据不可变&#xff0c;管理员都无法修改和留痕的要求。比如医疗的电子病历中&#xff0c;影像检查检验结果不可篡改行的&#xff0c;药品追溯过程中数据只可插入无法删除的特性需求&#xff1b;登录日志、修改日志…...

ffmpeg(四):滤镜命令

FFmpeg 的滤镜命令是用于音视频处理中的强大工具&#xff0c;可以完成剪裁、缩放、加水印、调色、合成、旋转、模糊、叠加字幕等复杂的操作。其核心语法格式一般如下&#xff1a; ffmpeg -i input.mp4 -vf "滤镜参数" output.mp4或者带音频滤镜&#xff1a; ffmpeg…...

如何将联系人从 iPhone 转移到 Android

从 iPhone 换到 Android 手机时&#xff0c;你可能需要保留重要的数据&#xff0c;例如通讯录。好在&#xff0c;将通讯录从 iPhone 转移到 Android 手机非常简单&#xff0c;你可以从本文中学习 6 种可靠的方法&#xff0c;确保随时保持连接&#xff0c;不错过任何信息。 第 1…...

数据链路层的主要功能是什么

数据链路层&#xff08;OSI模型第2层&#xff09;的核心功能是在相邻网络节点&#xff08;如交换机、主机&#xff09;间提供可靠的数据帧传输服务&#xff0c;主要职责包括&#xff1a; &#x1f511; 核心功能详解&#xff1a; 帧封装与解封装 封装&#xff1a; 将网络层下发…...

让AI看见世界:MCP协议与服务器的工作原理

让AI看见世界&#xff1a;MCP协议与服务器的工作原理 MCP&#xff08;Model Context Protocol&#xff09;是一种创新的通信协议&#xff0c;旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天&#xff0c;MCP正成为连接AI与现实世界的重要桥梁。…...

UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)

UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中&#xff0c;UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化&#xf…...

智能仓储的未来:自动化、AI与数据分析如何重塑物流中心

当仓库学会“思考”&#xff0c;物流的终极形态正在诞生 想象这样的场景&#xff1a; 凌晨3点&#xff0c;某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径&#xff1b;AI视觉系统在0.1秒内扫描包裹信息&#xff1b;数字孪生平台正模拟次日峰值流量压力…...