当前位置: 首页 > news >正文

学习笔记-剖析k8s之StatefulSet的拓扑状态-3月day18

文章目录

  • 前言
  • StatefulSet
    • Headless Service
    • Pod的拓扑状态
  • 小结

前言

Deployment实际上并不足以覆盖所有的应用编排问题,原因在于Deployment对应用做了一个简单化的假设:一个应用的所有Pod,是完全一样的。所以,它们互相之间没有顺序,也无所谓运行在哪台宿主机上。需要的时候,Deployment就可以通过Pod模板创建新的Pod;不需要的时候,Deployment就可以“杀掉”任意一个Pod。

但是,在实际的场景中,并不是所有的应用都可以满足这样的要求。尤其是分布式应用,它的多个实例之间,往往有依赖关系,比如:主从关系、主备关系。还有数据存储类应用,它的多个实例,往往都会在本地磁盘上保存一份数据。而这些实例一旦被杀掉,即便重建出来,实例与数据之间的对应关系也已经丢失,从而导致应用失败。

这种实例之间有不对等关系,以及实例对外部数据有依赖关系的应用,就被称为“有状态应用”(Stateful Application)。

容器技术,可以很好地用来封装“无状态应用”(Stateless Application),尤其是Web服务。但是,一旦你想要用容器运行“有状态应用”,其困难程度就会直线上升。而且,这个问题解决起来,单纯依靠容器技术本身已经无能为力。

得益于“控制器模式”的设计思想,Kubernetes项目很早就在Deployment的基础上,扩展出了对“有状态应用”的初步支持。这个编排功能,就是:StatefulSet。

StatefulSet

StatefulSet对应用状态做了两种情况的抽象:

  1. 拓扑状态:表示应用的多个实例之间不是完全对等的关系。这些应用实例,必须按照某些顺序启动,比如应用的主节点A要先于从节点B启动。而如果你把A和B两个Pod删除掉,它们再次被创建出来时也必须严格按照这个顺序才行。并且,新创建出来的Pod,必须和原来Pod的网络标识一样,这样原先的访问者才能使用同样的方法,访问到这个新Pod。
  2. 存储状态:应用的多个实例分别绑定了不同的存储数据。对于这些应用实例来说,Pod A第一次读取到的数据,和隔了十分钟之后再次读取到的数据,应该是同一份,哪怕在此期间Pod A被重新创建过。这种情况最典型的例子,就是一个数据库应用的多个存储实例。

StatefulSet的核心功能,就是通过某种方式记录这些状态,然后在Pod被重新创建时,能够为新Pod恢复这些状态。

Headless Service

在之前对Kubernetes架构的介绍中提到,Service是Kubernetes项目中用来将一组Pod暴露给外界访问的一种机制。比如,一个Deployment有3个Pod,那么我就可以定义一个Service。然后,用户只要能访问到这个Service,它就能访问到某个具体的Pod。
通过以下方式可以访问该service:

  1. 以Service的VIP(Virtual IP,即:虚拟IP)方式,如:当访问10.0.23.1这个Service的IP地址时,10.0.23.1其实就是一个VIP,它会把请求转发到该Service所代理的某一个Pod上。
  2. 以Service的DNS方式。如:只要访问“my-svc.my-namespace.svc.cluster.local”这条DNS记录,就可以访问到名叫my-svc的Service所代理的某一个Pod。
    Service DNS方式具体还可以分为两种处理方法:
    第一种处理方法,是Normal Service。这种情况下,你访问“my-svc.my-namespace.svc.cluster.local”解析到的,正是my-svc这个Service的VIP,后面的流程就跟VIP方式一致了。
    第二种处理方法,正是Headless Service。这种情况下,你访问“my-svc.my-namespace.svc.cluster.local”解析到的,直接就是my-svc代理的某一个Pod的IP地址。可以看到,这里的区别在于,Headless Service不需要分配一个VIP,而是可以直接以DNS记录的方式解析出被代理Pod的IP地址。

具体来看标准的Headless Service对应的YAML文件:

apiVersion: v1
kind: Service
metadata:name: nginxlabels:app: nginx
spec:ports:- port: 80name: webclusterIP: Noneselector:app: nginx

所谓的Headless Service,其实仍是一个标准Service的YAML文件。只不过,它的clusterIP字段的值是:None,即:这个Service,没有一个VIP作为“头”。这也就是Headless的含义。所以,这个Service被创建后并不会被分配一个VIP,而是会以DNS记录的方式暴露出它所代理的Pod。它所代理的Pod是采用Label Selector机制选择出来的,即:所有携带了app=nginx标签的Pod,都会被这个Service代理起来。
当按照这样的方式创建了一个Headless Service之后,它所代理的所有Pod的IP地址,都会被绑定一个这样格式的DNS记录,如下所示:

<pod-name>.<svc-name>.<namespace>.svc.cluster.local

这个DNS记录,正是Kubernetes项目为Pod分配的唯一的“可解析身份”(Resolvable Identity)。有了这个“可解析身份”,只要你知道了一个Pod的名字,以及它对应的Service的名字,你就可以非常确定地通过这条DNS记录访问到Pod的IP地址。

Pod的拓扑状态

我们来看一个StatefulSet的YAML文件:

apiVersion: apps/v1
kind: StatefulSet
metadata:name: web
spec:serviceName: "nginx"replicas: 2selector:matchLabels:app: nginxtemplate:metadata:labels:app: nginxspec:containers:- name: nginximage: nginx:1.9.1ports:- containerPort: 80name: web

这个YAML文件,和我们在前面文章中用到的nginx-deployment的唯一区别,就是多了一个serviceName=nginx字段。这个字段的作用,就是告诉StatefulSet控制器,在执行控制循环(Control Loop)的时候,请使用nginx这个Headless Service来保证Pod的“可解析身份”。

当通过kubectl create创建了上面这个Service和StatefulSet之后,就会看到如下两个对象:

$ kubectl create -f svc.yaml
$ kubectl get service nginx
NAME      TYPE         CLUSTER-IP   EXTERNAL-IP   PORT(S)   AGE
nginx     ClusterIP    None         <none>        80/TCP    10s
$ kubectl create -f statefulset.yaml
$ kubectl get statefulset web
NAME      DESIRED   CURRENT   AGE
web       2         1         19s

可以实时查看这个StatefulSet创建过程中的Events信息:

$ kubectl get pods -w -l app=nginx
NAME      READY     STATUS    RESTARTS   AGE
web-0     0/1       Pending   0          0s
web-0     0/1       Pending   0         0s
web-0     0/1       ContainerCreating   0         0s
web-0     1/1       Running   0         19s
web-1     0/1       Pending   0         0s
web-1     0/1       Pending   0         0s
web-1     0/1       ContainerCreating   0         0s
web-1     1/1       Running   0         20s

StatefulSet给它所管理的所有Pod的名字,进行了编号,编号规则是:statefulset name-ordinal index。
这些编号都是从0开始累加,与StatefulSet的每个Pod实例一一对应,绝不重复;这些Pod的创建,也是严格按照编号顺序进行的。比如,在web-0进入到Running状态、并且细分状态(Conditions)成为Ready之前,web-1会一直处于Pending状态。当这两个Pod都进入了Running状态之后,你就可以查看到它们各自唯一的“网络身份”了。

使用kubectl exec命令进入到容器中查看它们的hostname:

$ kubectl exec web-0 -- sh -c 'hostname'
web-0
$ kubectl exec web-1 -- sh -c 'hostname'
web-1

可以看到,这两个Pod的hostname与Pod名字是一致的,都被分配了对应的编号。

我们以DNS的方式,访问一下这个Headless Service:

$ kubectl run -i --tty --image busybox:1.28.4 dns-test --restart=Never --rm /bin/sh
$ nslookup web-0.nginx
Server:    10.0.0.10
Address 1: 10.0.0.10 kube-dns.kube-system.svc.cluster.localName:      web-0.nginx
Address 1: 10.244.1.7$ nslookup web-1.nginx
Server:    10.0.0.10
Address 1: 10.0.0.10 kube-dns.kube-system.svc.cluster.localName:      web-1.nginx
Address 1: 10.244.2.7

从nslookup命令的输出结果中,我们可以看到,在访问web-0.nginx的时候,最后解析到的,正是web-0这个Pod的IP地址;而当访问web-1.nginx的时候,解析到的则是web-1的IP地址。

如果你在另外一个Terminal里把这两个“有状态应用”的Pod删掉:

$ kubectl delete pod -l app=nginx
pod "web-0" deleted
pod "web-1" deleted

再在当前Terminal里Watch一下这两个Pod的状态变化

$ kubectl get pod -w -l app=nginx
NAME      READY     STATUS              RESTARTS   AGE
web-0     0/1       ContainerCreating   0          0s
NAME      READY     STATUS    RESTARTS   AGE
web-0     1/1       Running   0          2s
web-1     0/1       Pending   0         0s
web-1     0/1       ContainerCreating   0         0s
web-1     1/1       Running   0         32s

可以看到,当我们把这两个Pod删除之后,Kubernetes会按照原先编号的顺序,创建出了两个新的Pod。并且,Kubernetes依然为它们分配了与原来相同的“网络身份”:web-0.nginx和web-1.nginx。

通过这种严格的对应规则,StatefulSet就保证了Pod网络标识的稳定性。

再用nslookup命令,查看一下这个新Pod对应的Headless Service的话:

$ kubectl run -i --tty --image busybox dns-test --restart=Never --rm /bin/sh 
$ nslookup web-0.nginx
Server:    10.0.0.10
Address 1: 10.0.0.10 kube-dns.kube-system.svc.cluster.localName:      web-0.nginx
Address 1: 10.244.1.8$ nslookup web-1.nginx
Server:    10.0.0.10
Address 1: 10.0.0.10 kube-dns.kube-system.svc.cluster.localName:      web-1.nginx
Address 1: 10.244.2.8

在这个StatefulSet中,这两个新Pod的“网络标识”(比如:web-0.nginx和web-1.nginx),再次解析到了正确的IP地址(比如:web-0 Pod的IP地址10.244.1.8)。

通过这种方法,Kubernetes就成功地将Pod的拓扑状态(比如:哪个节点先启动,哪个节点后启动),按照Pod的“名字+编号”的方式固定了下来。此外,Kubernetes还为每一个Pod提供了一个固定并且唯一的访问入口,即:这个Pod对应的DNS记录。这些状态,在StatefulSet的整个生命周期里都会保持不变,绝不会因为对应Pod的删除或者重新创建而失效。

不过,尽管web-0.nginx这条记录本身不会变,但它解析到的Pod的IP地址,并不是固定的。这就意味着,对于“有状态应用”实例的访问,你必须使用DNS记录或者hostname的方式,而绝不应该直接访问这些Pod的IP地址

小结

StatefulSet这个控制器的主要作用之一,就是使用Pod模板创建Pod的时候,对它们进行编号,并且按照编号顺序逐一完成创建工作。而当StatefulSet的“控制循环”发现Pod的“实际状态”与“期望状态”不一致,需要新建或者删除Pod进行“调谐”的时候,它会严格按照这些Pod编号的顺序,逐一完成这些操作。所以,StatefulSet其实可以认为是对Deployment的改良。
与此同时,通过Headless Service的方式,StatefulSet为每个Pod创建了一个固定并且稳定的DNS记录,来作为它的访问入口。
实际上,在部署“有状态应用”的时候,应用的每个实例拥有唯一并且稳定的“网络标识”,是一个非常重要的假设。

此文章为3月Day18学习笔记,内容来源于极客时间《深入剖析Kubernetes》

相关文章:

学习笔记-剖析k8s之StatefulSet的拓扑状态-3月day18

文章目录前言StatefulSetHeadless ServicePod的拓扑状态小结附前言 Deployment实际上并不足以覆盖所有的应用编排问题&#xff0c;原因在于Deployment对应用做了一个简单化的假设&#xff1a;一个应用的所有Pod&#xff0c;是完全一样的。所以&#xff0c;它们互相之间没有顺序…...

Java实现输出九九乘法口诀表,输入行数输出对应的梯形(平行四边形)这两个代码

目录 一、前言 二、代码部分 1.输出九九乘法口诀表的代码 三、程序运行结果&#xff08;控制台输出&#xff09; 一、前言 1.本代码是我在上学时写的&#xff0c;有一些地方没能完美实现&#xff0c;请包涵也请多赐教&#xff01; 2.本弹窗界面可以根据简单的要求进行输…...

C++空间配置器

目录 1.什么是空间配置器 2.为什么需要空间配置器 3.SGI-STL空间配置器实现原理 3.1一级空间配置器 3.2二级空间配置器 3.2.1内存池 3.2.2 SGI-STL中二级空间配置器设计 3.3 空间配置器的默认选择 4.空间配置器与容器的结合 1.什么是空间配置器 空间配置器&#xff0…...

JConsole使用教程

JConsole是一个Java虚拟机的监控和管理工具&#xff0c;可以监控Java应用程序的内存使用、线程和类信息等。 以下是JConsole的使用教程&#xff1a; 1.启动JConsole JConsole是一个Java自带的工具&#xff0c;可以在bin目录下找到jconsole.exe文件。双击运行该文件即可启动JC…...

JS手写防抖和节流函数(超详细版整理)

1、什么是防抖和节流防抖&#xff08;debounce&#xff09;&#xff1a;每次触发定时器后&#xff0c;取消上一个定时器&#xff0c;然后重新触发定时器。防抖一般用于用户未知行为的优化&#xff0c;比如搜索框输入弹窗提示&#xff0c;因为用户接下来要输入的内容都是未知的&…...

我的Macbook pro使用体验

刚拿到Mac那一刻&#xff0c;第一眼很惊艳&#xff0c;不经眼前一亮&#xff0c;心想&#xff1a;这是一件艺术品&#xff0c;太好看了吧 而后再体验全新的Macos 系统&#xff0c;身为多年的win用户说实话一时间还是难以接受 1.从未见过的访达&#xff0c;不习惯的右键 2. …...

炼石入选“首届工业和信息化领域商用密码应用峰会”典型方案

2023年3月22日-23日&#xff0c;浙江省经济和信息化厅、浙江省通信管理局、浙江省密码管理局、工业和信息化部商用密码应用产业促进联盟联合举办的“首届工业和信息化领域商用密码应用峰会”&#xff08;以下简称峰会&#xff09;在浙江杭州成功举办&#xff0c;旨在深入推进工…...

使用new bing chat成功了

步骤一:在扩展商店搜索并安装modheader 打开浏览器; 点击右上角的三个点图标,选择“更多工具” -> “扩展程序”; 在扩展程序页面上方的搜索框中输入“modheader”,然后点击“搜索商店”; 在搜索结果中找到“ModHeader”扩展程序,点击“添加至”按钮,然后再点击“添…...

Golang每日一练(leetDay0019)

目录 55. 跳跃游戏 Jump Game &#x1f31f;&#x1f31f; 56. 合并区间 Mmerge Intervals &#x1f31f;&#x1f31f; 57. 插入区间 Insert Interval &#x1f31f;&#x1f31f; &#x1f31f; 每日一练刷题专栏 &#x1f31f; Golang每日一练 专栏 Python每日一练…...

记录一次性能测试遇到的问题

零、压测指标问题 压测指标&#xff0c;一定要需求方定 啊&#xff0c;谁提压测需求&#xff0c;谁来定压测指标。 如果需求方&#xff0c;对压测指标没有概念&#xff0c;研发和测试&#xff0c;可以把历史压测指标、生产数据导出来给需求方看&#xff0c;引导他们来定指标&…...

C++运算符重载基础教程

所谓重载&#xff0c;就是赋予新的含义。函数重载&#xff08;Function Overloading&#xff09;可以让一个函数名有多种功能&#xff0c;在不同情况下进行不同的操作。运算符重载&#xff08;Operator Overloading&#xff09;也是一个道理&#xff0c;同一个运算符可以有不同…...

Git命令总结

全局配置 git config --global user.name ‘你的名字’ git config --global user.email ‘你的邮箱’ 当前仓库配置 git config --local user.name ‘你的名字’ git config --local user.email ‘你的邮箱’ 查看 global 配置 git config --global --list 查看当前仓库…...

【车载以太网】BCM89572A0BCFBG、BCM89559GB0BCFBG、BCM89559GA0BCFBG具有安全启动和安全通信功能

BCM89572A0BCFBG 设备是Broadcom第六代完全集成的L2多层开关解决方案&#xff0c;支持车载网络应用的汽车认证(AEC-Q100)和温度等级。BCM8956X系列产品为汽车行业提高了具有多种一流功能的交换机的标准&#xff0c;例如802.1AE MACsec等集成安全功能&#xff0c;增加了主机连接…...

Lighttpd入门教程

Lighttpd入门教程概述入门教程安装配置静态文件服务动态文件服务虚拟主机SSL启动服务器日志模块总结lighthttpd使用场景和原理使用场景原理概述 Lighttpd&#xff08;也称为轻量级HTTP服务器&#xff09;是一款快速、灵活、轻量级的Web服务器&#xff0c;旨在提供高性能和低资…...

Springboot 多线程分批切割处理 大数据量List集合 ,实用示例

前言 哲学提问镇贴&#xff1a; 不了解异步怎么使用的看官&#xff0c; 可阅&#xff1a; SpringBoot 最简单的使用异步线程案例 Async_小目标青年的博客-CSDN博客 Springboot Async异步扩展使用 结合 CompletableFuture_小目标青年的博客-CSDN博客 想了解更多关于批量list处…...

SQLMAP工具基础使用

本文用的是kali自带的sqlmap工具 我们通过常用命令来理解sqlmap的基本使用 目录 检测注入 获取敏感信息 获取表 获取表的字段 获取数据 --technique 使用指定的注入方式 使用基于时间的延时注入 支持多种注入检测 默认是全部 注入时使用随机的 HTTP User-Agent 设置超时时间 读…...

初学多线程爬虫

多线程在爬虫中应用非常广泛&#xff0c;对于中大型项目来说很有必要&#xff0c;今天我将以初学者的姿态来完成一个简单的多线程爬虫程序。 1、如何认识多线程 计算机完成一项或多项任务&#xff0c;往往可以存在很高的并行度&#xff1a;若是多核处理器则天然的可以同时处理…...

python-实验报告-3

1、编写程序&#xff0c;用户输入一个五位整数&#xff0c;输出其千位和十位数字之和。 num int(input()) # 12345 s1 (num//1000)%10 s2 (num//10)%10sum s1 s2 print(sum)心得&#xff1a; 首先&#xff0c;程序通过 input() 函数获取用户输入的整数&#xff0c;保存在…...

00_托管网站在Tor网络上_Ubuntu主机

title: 托管网站在Tor网络上 urlname: 00_托管网站在Tor网络上_Ubuntu主机 date: 2017-04-24 03:03:03 tags: 小技巧 categories: [小技巧] 托管网站在Tor网络上&#xff08;Ubuntu主机&#xff09;https://www.t00ls.net/thread-44040-1-1.html 大部分人接触Tor网络是由Tor …...

个人练习-Leetcode-659. Split Array into Consecutive Subsequences

题目链接&#xff1a;https://leetcode.cn/problems/split-array-into-consecutive-subsequences/ 题目大意&#xff1a;给出一个非递减数列nums[]&#xff0c;判断其是否能被分割成若干个满足以下条件的子列&#xff1a; 长度大于等于3元素严格递增且只相差1 子列的含义是&…...

盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来

一、破局&#xff1a;PCB行业的时代之问 在数字经济蓬勃发展的浪潮中&#xff0c;PCB&#xff08;印制电路板&#xff09;作为 “电子产品之母”&#xff0c;其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透&#xff0c;PCB行业面临着前所未有的挑战与机遇。产品迭代…...

Device Mapper 机制

Device Mapper 机制详解 Device Mapper&#xff08;简称 DM&#xff09;是 Linux 内核中的一套通用块设备映射框架&#xff0c;为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程&#xff0c;并配以详细的…...

用机器学习破解新能源领域的“弃风”难题

音乐发烧友深有体会&#xff0c;玩音乐的本质就是玩电网。火电声音偏暖&#xff0c;水电偏冷&#xff0c;风电偏空旷。至于太阳能发的电&#xff0c;则略显朦胧和单薄。 不知你是否有感觉&#xff0c;近两年家里的音响声音越来越冷&#xff0c;听起来越来越单薄&#xff1f; —…...

mac 安装homebrew (nvm 及git)

mac 安装nvm 及git 万恶之源 mac 安装这些东西离不开Xcode。及homebrew 一、先说安装git步骤 通用&#xff1a; 方法一&#xff1a;使用 Homebrew 安装 Git&#xff08;推荐&#xff09; 步骤如下&#xff1a;打开终端&#xff08;Terminal.app&#xff09; 1.安装 Homebrew…...

C#学习第29天:表达式树(Expression Trees)

目录 什么是表达式树&#xff1f; 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持&#xff1a; 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...

android13 app的触摸问题定位分析流程

一、知识点 一般来说,触摸问题都是app层面出问题,我们可以在ViewRootImpl.java添加log的方式定位;如果是touchableRegion的计算问题,就会相对比较麻烦了,需要通过adb shell dumpsys input > input.log指令,且通过打印堆栈的方式,逐步定位问题,并找到修改方案。 问题…...

STM32---外部32.768K晶振(LSE)无法起振问题

晶振是否起振主要就检查两个1、晶振与MCU是否兼容&#xff1b;2、晶振的负载电容是否匹配 目录 一、判断晶振与MCU是否兼容 二、判断负载电容是否匹配 1. 晶振负载电容&#xff08;CL&#xff09;与匹配电容&#xff08;CL1、CL2&#xff09;的关系 2. 如何选择 CL1 和 CL…...

git: early EOF

macOS报错&#xff1a; Initialized empty Git repository in /usr/local/Homebrew/Library/Taps/homebrew/homebrew-core/.git/ remote: Enumerating objects: 2691797, done. remote: Counting objects: 100% (1760/1760), done. remote: Compressing objects: 100% (636/636…...

Qt学习及使用_第1部分_认识Qt---Qt开发基本流程

前言 学以致用,通过QT框架的学习,一边实践,一边探索编程的方方面面. 参考书:<Qt 6 C开发指南>(以下称"本书") 标识说明:概念用粗体倾斜.重点内容用(加粗黑体)---重点内容(红字)---重点内容(加粗红字), 本书原话内容用深蓝色标识,比较重要的内容用加粗倾…...

【Redis】Redis 的持久化策略

目录 一、RDB 定期备份 1.2 触发方式 1.2.1 手动触发 1.2.2.1 自动触发 RDB 持久化机制的场景 1.2.2.2 检查是否触发 1.2.2.3 线上运维配置 1.3 检索工具 1.4 RDB 备份实现原理 1.5 禁用 RDB 快照 1.6 RDB 优缺点分析 二、AOF 实时备份 2.1 配置文件解析 2.2 开启…...